LandscapeDNDC  1.36.0
Bibliography
[1]

John D. Aber and C. Anthony Federer. A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia, 92(4):463–474, December 1992.

[2]

John D. Aber, Scott V. Ollinger, C. Anthony Federer, Peter B. Reich, Michael L. Goulden, David W. Kicklighter, Jerry M. Melillo, and Richard G. Lathrop. Predicting the effects of climate change on water yield and forest production in the northeastern United States. Climate Research, 5(3):207–222, 1995.

[3]

C. Allan Jones, W. L. Bland, J. T. Ritchie, and J. R. Williams. Simulation of Root Growth, pages 91–123.

[4]

John D. Bailey and Constance A. Harrington. Temperature regulation of bud-burst phenology within and among years in a young douglas-fir (pseudotsuga menziesii) plantation in western washington, usa. Tree Physiology, 26:421–430, 2006.

[5]

J. Timothy Ball, Ian E. Woodrow, and Joseph A. Berry. A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions, pages 221–224. Springer Netherlands, Dordrecht, 1987.

[6]

Mary S. Booth, John M. Stark, and Edward Rastetter. CONTROLS ON NITROGEN CYCLING IN TERRESTRIAL ECOSYSTEMS: A SYNTHETIC ANALYSIS OF LITERATURE DATA. Ecological Monographs, 75(2):139–157, February 2005.

[7]

D. Brunt. Notes on radiation in the atmosphere. I. Quarterly Journal of the Royal Meteorological Society, 58(247):389–420, October 1932.

[8]

M.G.R. Cannell and J.H.M. Thornley. Temperature and co2 responses of leaf and canopy photosynthesis: a clarifcation using the non-rectangular hyperbola model of photosynthesis. Annals of Botany, 82(6):883–892, 1998.

[9]

M.G.R. Cannell and J.H.M. Thornley. Modelling the components of plant respiration: Some guiding principles. Annals of Botany, 85:45–54, 2000.

[10]

G.J. Collatz, M. Ribas-Carbo, and J.A. Berry. Coupled photosynthesis-stomatal conductance model for leaves of c4 plants. Australian Journal of Plant Physiology, 19:519–538, 1992.

[11]

Sonia Condés and Hubert Sterba. Derivation of compatible crown width equations for some important tree species of Spain. Forest Ecology and Management, 217(2):203–218, October 2005.

[12]

V. Couvreur, J. Vanderborght, and M. Javaux. A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach. Hydrology and Earth System Sciences, 16(8):2957–2971, 2012.

[13]

V. Couvreur, J. Vanderborght, L. Beff, and M. Javaux. Horizontal soil water potential heterogeneity: simplifying approaches for crop water dynamics models. Hydrology and Earth System Sciences, 18(5):1723–1743, 2014.

[14]

E.J. Dik. Estimating the wood volume of standing trees in forestry practice, volume 19 of Uitvoerige verslagen. Rijksinstituut voor onderzoek in de bos en landschapsbouw de Dorschkamp, Wageningen, 1984. cit. in Zianis et al. 2005.

[15]

Cleiton B. Eller, Lucy Rowland, Maurizio Mencuccini, Teresa Rosas, Karina Williams, Anna Harper, Belinda E. Medlyn, Yael Wagner, Tamir Klein, Grazielle S. Teodoro, Rafael S. Oliveira, Ilaine S. Matos, Bruno H. P. Rosado, Kathrin Fuchs, Georg Wohlfahrt, Leonardo Montagnani, Patrick Meir, Stephen Sitch, and Peter M. Cox. Stomatal optimization based on xylem hydraulics (sox) improves land surface model simulation of vegetation responses to climate. New Phytologist, 226(6):1622–1637, May 2020.

[16]

J.R. Evans. The dependence of quantum yield on wavelength and growth irradiance. Functional Plant Biology, 14(1):69–79, 1987.

[17]

John R. Evans. Photosynthesis and nitrogen relationships in leaves of c3 plants. Oecologia, 78(1):9–19, 1989. not yet printed.

[18]

GD v Farquhar, S. von Caemmerer, and J. A. Berry. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1):78–90, 1980. 05783.

[19]

Andre Granier, Denis Loustau, and Nathalie Breda. A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Annals of Forest Science, 57(8):755–765, December 2000.

[20]

Wouter Greuell, Wouter H. Knap, and Paul C. Smeets. Elevational changes in meteorological variables along a midlatitude glacier during summer. Journal of Geophysical Research: Atmospheres, 102(D22):25941–25954, November 1997.

[21]

R. Grote and H. Pretzsch. A model for individual tree development based on physiological processes. Plant Biology, 4(2):167–180, 2002.

[22]

Rüdiger Grote, Anne-Violette Lavoir, Serge Rambal, Michael Staudt, Ina Zimmer, and Jörg-Peter Schnitzler. Modelling the drought impact on monoterpene fluxes from an evergreen mediterranean forest canopy. Oecologia, 160(2):213–223, 2009.

[23]

R. Grote. Integrating dynamic morphological properties into forest growth modeling. ii. allocation and mortality. Forest Ecology and Management, 111(2/3):193–210, 1998.

[24]

Rüdiger Grote. Estimation of crown radii and crown projection area from stem size and tree position. Annals of Forest Science, 60(5):393–402, July 2003.

[25]

Rüdiger Grote. Sensitivity of volatile monoterpene emission to changes in canopy structure: a model-based exercise with a process-based emission model. New Phytologist, 173(3):550–561, February 2007.

[26]

Edwin Haas, Steffen Klatt, Alexander Fröhlich, Philipp Kraft, Christian Werner, Ralf Kiese, Rüdiger Grote, Lutz Breuer, and Klaus Butterbach-Bahl. LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale. Landscape ecology, 28(4):615–636, 2013.

[27]

Heikki Haenninen. Modelling bud dormancy release in trees from cool and temperate regions. The Society of Forestry in Finland-The Finnish Forest Research Institute, 1990.

[28]

P.C. Harley and D.D. Baldocchi. Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. i. leaf model parameterization. Plant, Cell & Environment, 18(10):1146–1156, 1995.

[29]

P. C. Harley, J. A. Weber, and D. M. Gates. Interactive effects of light, leaf temperature, co2 and o2 on photosynthesis in soybean. Planta, 165(2):249–263, 1985.

[30]

P.C. Harley, R.B. Thomas, J.F. Reynolds, and B.R. Strain. Modelling photosynthesis of cotton grown in elevated co2. Plant, Cell & Environment, 15:271–282, 1992.

[31]

Akihiko Ito, Hiroyuki Muraoka, Hiroshi Koizumi, Nobuko Saigusa, Shohei Murayama, and Susumu Yamamoto. Seasonal variation in leaf properties and ecosystem carbon budget in a cool-temperate deciduous broad-leaved forest: simulation analysis at takayama site, japan. Ecological Research, 21:137–149, 2006.

[32]

P.G. Jarvis and K.G. McNaughton. Stomatal Control of Transpiration: Scaling Up from Leaf to Region. Advances in Ecological Research, 15:1–49, January 1986.

[33]

P.G. Jarvis. The interpretation of leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society B: Biological Sciences, 273:593–610, 1976.

[34]

Yones Khaledian, Eric C. Brevik, Paulo Pereira, Artemi Cerdà, Mohammed A. Fattah, and Hossein Tazikeh. Modeling soil cation exchange capacity in multiple countries. CATENA, 158:194–200, November 2017.

[35]

Jürgen Knauer, Christiane Werner, and Sönke Zaehle. Evaluating stomatal models and their atmospheric drought response in a land surface scheme: A multibiome analysis. Journal of Geophysical Research: Biogeosciences, 120(10):1894–1911, October 2015.

[36]

B. Kostner, E. Falge, and J. D. Tenhunen. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany. Tree Physiology, 22(8):567–574, June 2002.

[37]

B. Lalic and D.T. Mihailovic. A new approach in parameterisation of momentum transport inside and above forest canopy under neutral conditions. volume 1 of Integrated Assessment and Decision Support, Proceedings of the First Biennial Meeting of the International Environmental Modelling and Software Society, pages 436–441. iEMSs, 2009.

[38]

A. Lehning, W. Zimmer, I. Zimmer, and J.-P. Schnitzler. Modeling of annual variations of oak (Quercus robur L.) isoprene synthase activity to predict isoprene emission rates. Journal of Geophysical Research: Atmospheres, 106(D3):3157–3166, February 2001.

[39]

R. LEUNING. A critical appraisal of a combined stomatal-photosynthesis model for c3 plants. Plant, Cell & Environment, 18(4):339–355, 1995.

[40]

Changsheng Li, Steve Frolking, and Robert Harriss. Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles, 8(3):237–254, September 1994.

[41]

C. Li, J. Aber, F. Stange, K. Butterbach-Bahl, and H. Papen. A process-oriented model of ntwoo and no emissions from forest soils: 1. model development. Journal of Geophysical Research, 105(D4):4369–4384, 2000.

[42]

C. Li. A model of nitrous-oxide evolution from soil driven by rainfall events. 1. model structure and sensitivity. Journal of Geophysical Research, 97(D9):9759–9776, 1992.

[43]

Tapio Linkosalo, Hanna K. Lappalainen, and Pertti Hari. A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiology, 28(12):1873–1882, 2008.

[44]

S.P. Long. Modification of the response of photosynthetic productivity to rising temperature by atmospheric co2 concentrations: Has its importance been underestimated?. Plant, Cell & Environment, 14(8):729–739, 1991.

[45]

B.E. Medlyn, E. Dreyer, D. Ellsworth, M. Forstreuter, P.C. Harley, M.U.F. Kirschbaum, X. Le Roux, P. Montpied, J. Strassmeyer, A. Walcroft, K. Wang, and D. Loustau. Temperature response of parameters of a biochemically based model of photosynthesis. ii. a review of experimental data. Plant, Cell & Environment, 25(9):1167–1179, 2002.

[46]

R. J. Millington and J. P. Quirk. Permeability of porous solids. Transactions of the Faraday Society, 57:1200, 1961.

[47]

Yechezkel Mualem. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3):513–522, June 1976.

[48]

Annikki Mäkelä, Pertti Hari, Frank Berninger, Heikki Hanninen, and Eero Nikinmaa. Acclimation of photosynthetic capacity in scots pine to the annual cycle of temperature. Tree Physiology, 24(4):369–376, 2004.

[49]

Teimour Razavipour and Ali Reza Farrokh. Measurement of vertical water percolation through different soil textures of paddy field during rice growth season. International journal of Advanced Biological and Biomedical Research, 2(5):1379–1388, 2014.

[50]

TR Sinclair. Water and nitrogen limitations in soybean grain production I. Model development. Field Crops Research, 15(2):125–141, 1986.

[51]

Jed P. Sparks, Russell K. Monson, Kimberlee L. Sparks, and Manuel Lerdau. Leaf uptake of nitrogen dioxide (no2) in a tropical wet forest: implications for tropospheric chemistry. Oecologia, 127:214–221, 2001.

[52]

C.J.T. Spitters, H. van Keulen, and D.W.G. Kraalingen. A simple and universal crop growth simulator: SUCROS87. In Simulation and systems management in crop protection, pages 147–181. Pudoc, 1989.

[53]

C.J.T. Spitters. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. part ii. calculation of canopy photosynthesis. Agricultural and Forest Meteorology, 38:231–242, 1986. Label: Sp3.

[54]

Florian Stange, Klaus Butterbach-Bahl, Hans Papen, Sophie Zechmeister-Boltenstern, Changsheng Li, and John Aber. A process-oriented model of n2o and no emissions from forest soils: 2. sensitivity analysis and validation. Journal of Geophysical Research: Atmospheres (1984–2012), 105(D4):4385–4398, 2000.

[55]

C.W. Thornthwaite. An approach toward a rational classification of climate. Geographical Review, 38(1):55–94, 1948.

[56]

H.C. Thorpe, R. Astrup, A. Trowbridge, and K.D. Coates. Competition and tree crowns: A neighborhood analysis of three boreal tree species. Forest Ecology and Management, 259(8):1586–1596, 2010.

[57]

A. Tuzet, A. Perrier, and R. Leuning. A coupled model of stomatal conductance, photosynthesis and transpiration. Plant, Cell & Environment, 26(7):1097–1116, 2003.

[58]

D. W. G. Van Kraalingen and W. Stol. Evapotranspiration modules for crop growth simulation. Implementation of the algorithms from Penman, Makkink and Priestley-Taylor. In Quantitative approaches in systems analysis, volume 11. DLO Research Institute for Agrobiology and Soil Fertility, Wageningen, 1997.

[59]

M. T. Van Wijk, S. C. Dekker, W. Bouten, F. C. Bosveld, W. Kohsiek, K. Kramer, and G. M. J. Mohren. Modeling daily gas exchange of a Douglas-fir forest: comparison of three stomatal conductance models with and without a soil water stress function. Tree Physiology, 20(2):115–122, January 2000.

[60]

S. Von Caemmerer and G.D. Farquhar. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153(4):376–387, 1981.

[61]

Susanne Von Caemmerer, Graham Farquhar, and Joseph Berry. Biochemical Model of C3 Photosynthesis, chapter 9, pages 209–230. Springer, 2009.

[62]

Y.-P. Wang and R. Leuning. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I:. Agricultural and Forest Meteorology, 91(1-2):89–111, May 1998.

[63]

Cort J. Willmott, Clinton M. Rowe, and Yale Mintz. Climatology of the terrestrial seasonal water cycle. Journal of Climatology, 5(6):589–606, November 1985.

[64]

Shouichi Yoshida. Fundamentals of rice crop science. Int. Rice Res. Inst., 1981.

[65]

D. Zianis, P. Muukkonen, R. Mäkipää, and M. Mencuccini. Biomass and stem volume equations for tree species in europe. Silva Fennica, Monographs 4:1–63, 2005.