LandscapeDNDC  1.37.0
ldndc::EcHy Class Reference

Hydrology model EcHy. More...

Inherits ldndc::MBE_LegacyModel.

Public Member Functions

lerr_t solve ()
 

Private Member Functions

lerr_t EcHyIrrigation ()
 Irrigation.
 
lerr_t EcHyFlood ()
 sets hydrologic conditions during flooding events, e.g., More...
 
lerr_t EcHyPercolation (size_t, size_t)
 Calculates water percolation within the soil profile.
 
lerr_t EcHyBypassFlow (double, double &)
 Calculates water percolation within the soil profile.
 
lerr_t EcHyEvapotranspiration ()
 Calculates evapotranspiration within the soil profile.
 
lerr_t EcHyCapillaryRise (double const &, double const &, size_t const &, double const &, double &)
 ... More...
 
lerr_t EcHyBalanceCheck (double &)
 ... More...
 
void EcHyreset ()
 ...
 
lerr_t EcHyGroundwater ()
 ... More...
 
lerr_t EcHyIntegration ()
 ... More...
 
lerr_t EcHyStepInit ()
 ...
 
lerr_t EcHyStepExit ()
 ...
 
double EcHyGetInterceptionCapacity ()
 ...
 
lerr_t EcHyCalculateLeafWaterDistribution (lvector_t< double > &, lvector_t< double > &)
 ...
 
lerr_t EcHyPotentialEvapotranspiration ()
 Calculates potential evapotranspiration. Specific concept can be given as model option.
 
lerr_t EcHySnowIce ()
 Calls SnowDNDC for the calculation of snowpack and soil ice formation.
 
double EcHyGetMinimumWater (size_t)
 ...
 
double EcHyGetWiltingPoint (size_t)
 ...
 
double EcHyGetAvailableWaterTranspiration (size_t)
 ...
 
double EcHyGetAvailableWaterEvaporation (size_t)
 ...
 
double EcHyGetRootLimitation (size_t _sl, double)
 ...
 
double EcHySoilWaterChange (size_t)
 

Private Attributes

double kst_bottom
 
double gw_depth_static
 
double accumulated_potentialtranspiration_old
 
double accumulated_irrigation_old
 
lvector< double > trwl_sl
 
lvector< double > wlfl_sl
 
lvector< double > cr_fill_sl
 
lvector< double > gw_fill_sl
 
lvector< double > bypass_fill_sl
 
double ev_surfacewater
 
lvector< double > evsws_sl
 
lvector< double > kst_sl
 
lvector< double > wl_sl
 
lvector< double > wlfc_sl
 
lvector< double > wlwp_sl
 
double ev_leaf
 
double gw_fill_surface
 
double cr_fill_groundwater
 
double runoff
 
double throughfall_snow
 
double throughfall_water
 
double canopy_snowmelt
 
double canopy_water
 
double thornthwaite_heat_index
 
double daily_potential_evapotranspiration
 
double daily_potential_leaf_evaporation
 
double daily_potential_soil_evaporation
 
double daily_potential_transpiration
 
WaterCycleSnowDNDC::IceContentStateIn m_icecontent_in
 
cbm::string_t evapotranspiration_method
 
cbm::string_t runoff_method
 

Detailed Description

Hydrology model EcHy.

Author
David Kraus

Member Function Documentation

◆ EcHyBalanceCheck()

lerr_t ldndc::EcHy::EcHyBalanceCheck ( double &  _balance)
private

...

Checks balance between all incoming and outgoing water fluxes.

References canopy_water, cr_fill_groundwater, ev_leaf, ev_surfacewater, evsws_sl, gw_fill_sl, gw_fill_surface, runoff, throughfall_snow, throughfall_water, trwl_sl, wl_sl, and wlfl_sl.

Referenced by solve().

497 {
498  double balance( canopy_water + surface_water + canopy_snow + surface_snow);
499  for ( size_t sl = 0; sl < soillayers_in->soil_layer_cnt(); ++sl)
500  {
501  balance += wl_sl[sl] + wc_.ice_sl[sl] * sc_.h_sl[sl];
502  }
503 
504  if ( _balance > 0.0)
505  {
506  balance += wlfl_sl[soillayers_in->soil_layer_cnt()]
507  + ev_leaf + ev_surfacewater + evsws_sl.sum() + trwl_sl.sum() + runoff
509  - irrigation - throughfall_water - throughfall_snow;
510 
511  double const balance_delta( std::abs( _balance - balance));
512  if ( cbm::flt_greater( balance_delta, 1.0e-4))
513  {
514  KLOGWARN( "Water leakage in: ", name(),
515  " Difference: ", balance - _balance);
516  return LDNDC_ERR_FAIL;
517  }
518  }
519  else
520  {
521  _balance = balance;
522  }
523 
524  return LDNDC_ERR_OK;
525 }
double gw_fill_surface
Definition: echy.h:125
double ev_leaf
Definition: echy.h:122
double throughfall_water
Definition: echy.h:137
lvector< double > trwl_sl
Definition: echy.h:83
double cr_fill_groundwater
Definition: echy.h:128
lvector< double > wl_sl
Definition: echy.h:113
lvector< double > evsws_sl
Definition: echy.h:106
double throughfall_snow
Definition: echy.h:134
lvector< double > gw_fill_sl
Definition: echy.h:97
double canopy_water
Definition: echy.h:144
double runoff
Definition: echy.h:131
double ev_surfacewater
Definition: echy.h:103
lvector< double > wlfl_sl
Definition: echy.h:91
Here is the caller graph for this function:

◆ EcHyCapillaryRise()

lerr_t ldndc::EcHy::EcHyCapillaryRise ( double const &  _cp,
double const &  _delta_z,
size_t const &  _sl,
double const &  _saturation,
double &  _flow 
)
private

...

This routine calculates the rate of capillary flow or percolation between groundwater table and root zone. The stationary flow is found by integration of dZL = K.d(MH)/(K + FLW), where Z= height above groundwater, MH= matric head, K= conductivity and FLW= chosen flow. In an iteration loop the correct flow is found. The integration goes at most over four intervals: [0,45], [45,170], [170,330] and [330,MH-rootzone] (last one on logarithmic scale).

Author
C. Rappoldt M. Wopereis
Date
January 1986, revised June 1990

Chapter 15 in documentation WOFOST Version 4.1 (1988)

References kst_sl.

259 {
260  //calculation of pf from matrix head
261  double pf( std::log10( _cp));
262 
263  //in case of small matric head (high water contents)
264  if ( cbm::flt_greater( 1.0, pf))
265  {
266  _flow = 0.0;
267  return LDNDC_ERR_OK;
268  }
269 
270  double elog10( 2.302585);
271  double logst4( 2.518514);
272 
273  double start[4] = {0.0, 45.0, 170.0, 330.0};
274 
275  //number and width of integration intervals
276  int iint( 0);
277  double del[4] = { 0.0, 0.0, 0.0, 0.0};
278  for (int i1 = 0; i1 < 4; i1++)
279  {
280  if (i1 < 3)
281  {
282  del[i1] = std::min( start[i1+1], _cp) - start[i1];
283  }
284  else
285  {
286  del[i1] = pf - logst4;
287  }
288  if (del[i1] <= 0.0)
289  {
290  break;
291  }
292  iint += 1;
293  }
294 
295  //preparation of three-point gaussian integration
296  double hulp[12] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
297  double conduc[12] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
298  for (int i1 = 0; i1 < iint; i1++)
299  {
300  for (int i2 = 0; i2 < 3; i2++)
301  {
302  double pgau[3] = {0.1127016654, 0.5, 0.8872983346};
303  double wgau[3] = {0.2777778, 0.4444444, 0.2777778};
304 
305  int i3( 3 * i1 + i2);
306 
307  //the three points in the full-width intervals are standard
308  double pfstan[9] = {0.705143, 1.352183, 1.601282, 1.771497, 2.031409, 2.192880, 2.274233, 2.397940, 2.494110};
309  double pfgau( pfstan[i3]);
310 
311  //the three points in the last interval are calculated
312  if ( i1 == (iint-1))
313  {
314  if ( iint < 4)
315  {
316  pfgau = std::log10( start[iint-1] + pgau[i2] * del[iint-1]);
317  }
318  else
319  {
320  pfgau = logst4 + pgau[i2] * del[iint-1];
321  }
322  }
323 
324  double const wcl_loc( ldndc::hydrology::water_content( std::exp(elog10 * pfgau), wc_.vga_sl[_sl], wc_.vgn_sl[_sl], wc_.vgm_sl[_sl], _saturation, 0.1));
325  conduc[i3] = ldndc::hydraulic_conductivity( wcl_loc, wc_.vgm_sl[_sl], wc_.mvg_tau_sl[_sl],
326  _saturation, wc_.wc_wp_sl[_sl], kst_sl[_sl] * cbm::CM_IN_M);
327  hulp[i3] = del[i1] * wgau[i2] * conduc[i3];
328  if (i3 > 8)
329  {
330  hulp[i3] = hulp[i3] * elog10 * std::exp( elog10 * pfgau);
331  }
332  }
333  }
334 
335  //setting upper and lower limit
336  double const wcl_loc( ldndc::hydrology::water_content( _cp, wc_.vga_sl[_sl], wc_.vgn_sl[_sl], wc_.vgm_sl[_sl], _saturation, 0.1));
337  double const kms( ldndc::hydraulic_conductivity( wcl_loc, wc_.vgm_sl[_sl], wc_.mvg_tau_sl[_sl],
338  _saturation, wc_.wc_wp_sl[_sl], kst_sl[_sl] * cbm::CM_IN_M));
339  double fu( (_cp <= _delta_z) ? 0.0 : 1.27);
340  double fl( (_cp >= _delta_z) ? 0.0 : -kms);
341 
342  if ( !cbm::flt_equal( _cp, _delta_z))
343  {
344  //iteration loop
345  int imax( 3 * iint);
346  for ( int i1 = 0; i1 < 14; i1++)
347  {
348  double flw( (fu + fl) / 2.0);
349  double df( (fu - fl) / 2.0);
350  if ( (df < 0.01) &&
351  ((df / std::abs(flw)) < 0.1))
352  {
353  break;
354  }
355 
356  double z( 0.0);
357  for ( int i2 = 0; i2 < imax; i2++)
358  {
359  z = z + hulp[i2] / (conduc[i2] + flw);
360  }
361  if (z >= _delta_z)
362  {
363  fl = flw;
364  }
365  if (z <= _delta_z)
366  {
367  fu = flw;
368  }
369  }
370  }
371 
372  //flow output in mm
373  _flow = 10.0 * (fu + fl) / 2.0;
374 
375  return LDNDC_ERR_OK;
376 }
lvector< double > kst_sl
Definition: echy.h:109

◆ EcHyFlood()

lerr_t ldndc::EcHy::EcHyFlood ( )
private

sets hydrologic conditions during flooding events, e.g.,

Flooding.

  • surface water table
  • bund height

References kst_sl, and wl_sl.

Referenced by solve().

18 {
19  lerr_t rc = m_eventflood.solve();
20  if ( rc != LDNDC_ERR_OK){ return rc; }
21 
22  bund_height = m_eventflood.get_bund_height();
23 
24  /* todo */
25  //irrigation_amount = m_eventflood.get_irrigation_amount();
26 
27  /* todo */
28  //double const irrigation_height = m_eventflood.get_irrigation_height();
29  double const max_percolation = m_eventflood.get_maximum_percolation();
30  double const water_table_flooding = m_eventflood.get_water_table();
31 
32  irrigation_switch = NONE;
33  minimum_watertable_height = 0.0;
34  if ( cbm::is_valid( water_table_flooding))
35  {
36  if ( cbm::flt_greater_zero( water_table_flooding))
37  {
38  irrigation_switch = CONSTANT_POSITIVE_WATER_TABLE;
39  minimum_watertable_height = water_table_flooding;
40  bund_height = water_table_flooding;
41  }
42  else
43  {
44  irrigation_switch = CONSTANT_NEGATIVE_WATER_TABLE;
45  minimum_watertable_height = water_table_flooding;
46  bund_height = 0.0;
47  }
48  }
49 
50  bool cracked( false);
51  for (size_t sl = 0; sl < soillayers_in->soil_layer_cnt()-1; sl++)
52  {
53  if ( cbm::flt_greater_equal( sc_.depth_sl[sl], 0.3))
54  {
55  if ( cbm::is_valid( max_percolation))
56  {
57  if ((kst_eq_sl[sl] > max_percolation / lclock()->time_resolution()))
58  {
59 
60  kst_sl[sl] = cbm::bound_min( 0.0,
61  kst_eq_sl[sl] -
62  (kst_eq_sl[sl] - max_percolation / lclock()->time_resolution()) *
63  (sc_.depth_sl[sl] - 0.2) / (sc_.depth_sl[soillayers_in->soil_layer_cnt()-1] - 0.2));
64  }
65  kst_sl[sl] = max_percolation / lclock()->time_resolution();
66  }
67  else if ( wl_sl[sl] < -0.8 * pore_space( sl))
68  {
69  cracked = true;
70  }
71 
72  if ( cracked)
73  {
74  double const time_rate( 0.1 / lclock()->time_resolution());
75  kst_sl[sl] = cbm::bound_min( 0.0,
76  kst_sl[sl] - (kst_sl[sl] - kst_eq_sl[sl]) * time_rate);
77  }
78  break;
79  }
80  }
81 
82  return LDNDC_ERR_OK;
83 }
lvector< double > wl_sl
Definition: echy.h:113
lvector< double > kst_sl
Definition: echy.h:109
Here is the caller graph for this function:

◆ EcHyGroundwater()

lerr_t ldndc::EcHy::EcHyGroundwater ( )
private

...

Negative groundwater table represents water on the soil surface

Negative groundwater table represents water on the soil surface

References cr_fill_groundwater, cr_fill_sl, EcHySoilWaterChange(), gw_depth_static, gw_fill_sl, gw_fill_surface, kst_sl, and wl_sl.

Referenced by solve().

20 {
21  cbm::invalidate( kst_bottom_gw_vertical);
22  if ( cbm::flt_greater( sc_.depth_sl[soillayers_in->soil_layer_cnt()-1], gw_depth_static))
23  {
28  if ( cbm::flt_greater( -gw_depth_static, surface_water))
29  {
30  gw_fill_surface = -gw_depth_static - surface_water;
31  }
32 
33  //groundwater access
34  {
35  size_t sl( 0);
36  double const layer_midpoint_depth( 0.5 * sc_.h_sl[sl]);
37  if ( cbm::flt_greater_equal( layer_midpoint_depth, gw_depth_static))
38  {
39  gw_fill_sl[sl] = cbm::bound_min( 0.0,
40  0.999 * pore_space( sl) - wc_.ice_sl[sl] * sc_.h_sl[sl]
41  - (wl_sl[sl] + EcHySoilWaterChange( sl)));
42  wc_.accumulated_groundwater_access += gw_fill_sl[sl];
43  }
44  else
45  {
46  double const wl_new( wl_sl[sl] + EcHySoilWaterChange( sl));
47  double const wc_new( cbm::bound( wc_.wc_res_sl[sl], wl_new / sc_.h_sl[sl], wc_.wc_sat_sl[sl]));
48  kst_bottom_gw_vertical = cbm::bound_min( 0.0,
49  ldndc::hydraulic_conductivity(
50  wc_new,
51  wc_.vgm_sl[sl],
52  wc_.mvg_tau_sl[sl],
53  wc_.wc_sat_sl[sl],
54  wc_.wc_res_sl[sl],
55  kst_sl[sl]));
56  gw_fill_sl[sl] = 0.0;
57  }
58  }
59 
60  for (size_t sl = 1; sl < soillayers_in->soil_layer_cnt()-1; sl++)
61  {
62  double const layer_midpoint_depth( sc_.depth_sl[sl] - 0.5 * sc_.h_sl[sl]);
63  if ( cbm::flt_greater_equal( layer_midpoint_depth, gw_depth_static))
64  {
65  gw_fill_sl[sl] = cbm::bound_min( 0.0,
66  0.999 * pore_space( sl) - wc_.ice_sl[sl] * sc_.h_sl[sl]
67  - (wl_sl[sl] + EcHySoilWaterChange( sl)));
68  wc_.accumulated_groundwater_access += gw_fill_sl[sl];
69  }
70  else
71  {
72  double const wl_new( wl_sl[sl] + EcHySoilWaterChange( sl));
73  double const wc_new( cbm::bound( wc_.wc_res_sl[sl], wl_new / sc_.h_sl[sl], wc_.wc_sat_sl[sl]));
74  kst_bottom_gw_vertical = cbm::bound_min( 0.0,
75  ldndc::hydraulic_conductivity(
76  wc_new,
77  wc_.vgm_sl[sl],
78  wc_.mvg_tau_sl[sl],
79  wc_.wc_sat_sl[sl],
80  wc_.wc_res_sl[sl],
81  kst_sl[sl]));
82  gw_fill_sl[sl] = 0.0;
83  }
84  }
85 
86  {
87  size_t sl( soillayers_in->soil_layer_cnt()-1);
88  double const layer_midpoint_depth( sc_.depth_sl[sl] - 0.5 * sc_.h_sl[sl]);
89  if ( cbm::flt_greater_equal( layer_midpoint_depth, gw_depth_static))
90  {
91  gw_fill_sl[sl] = cbm::bound_min( 0.0,
92  0.999 * pore_space( sl) - wc_.ice_sl[sl] * sc_.h_sl[sl]
93  - (wl_sl[sl] + EcHySoilWaterChange( sl)));
94  wc_.accumulated_groundwater_access += gw_fill_sl[sl];
95  }
96  else
97  {
98  double const wl_new( wl_sl[sl] + EcHySoilWaterChange( sl));
99  double const wc_new( cbm::bound( wc_.wc_res_sl[sl], wl_new / sc_.h_sl[sl], wc_.wc_sat_sl[sl]));
100  kst_bottom_gw_vertical = cbm::bound_min( 0.0,
101  ldndc::hydraulic_conductivity(
102  wc_new,
103  wc_.vgm_sl[sl],
104  wc_.mvg_tau_sl[sl],
105  wc_.wc_sat_sl[sl],
106  wc_.wc_res_sl[sl],
107  kst_sl[sl]));
108  gw_fill_sl[sl] = 0.0;
109  }
110  }
111  }
112 
113  //capillary rise
114  if ( m_param->WCDNDC_HAVE_CAPILLARY_ACTION())
115  {
116  size_t const STEPS( 10);
117  for (size_t steps = 0; steps < STEPS; steps++)
118  {
119  for (size_t sl = 0; sl < soillayers_in->soil_layer_cnt()-1; sl++)
120  {
121  double const layer_midpoint_depth( sc_.depth_sl[sl] - 0.5 * sc_.h_sl[sl]);
122  if ( cbm::flt_greater_equal( layer_midpoint_depth, gw_depth_static))
123  {
124  break;
125  }
126 
127  /* Water contents with until now calculated water balance */
128  double const wl_new_0( wl_sl[sl] + EcHySoilWaterChange( sl));
129  double const wl_new_1( wl_sl[sl+1] + EcHySoilWaterChange( sl+1));
130 
131  double const wc_vg_0( cbm::bound( wc_.wc_res_sl[sl], wl_new_0 / sc_.h_sl[sl], wc_.wc_sat_sl[sl]));
132  double const wc_vg_1( cbm::bound( wc_.wc_res_sl[sl+1], wl_new_1 / sc_.h_sl[sl+1], wc_.wc_sat_sl[sl+1]));
133 
134  /* Unsaturated hydraulic conductivity with until now calculated water balance */
135  double const kust_0( cbm::bound_min( 0.0,
136  ldndc::hydraulic_conductivity(
137  wc_vg_0, wc_.vgm_sl[sl], wc_.mvg_tau_sl[sl],
138  wc_.wc_sat_sl[sl], wc_.wc_res_sl[sl],
139  1.0/double(STEPS)*kst_sl[sl])));
140  double const kust_1( cbm::bound_min( 0.0,
141  ldndc::hydraulic_conductivity(
142  wc_vg_1, wc_.vgm_sl[sl+1], wc_.mvg_tau_sl[sl],
143  wc_.wc_sat_sl[sl+1], wc_.wc_res_sl[sl+1],
144  1.0/double(STEPS)*kst_sl[sl+1])));
145 
146  double const capillary_pressure_0( ldndc::capillary_pressure(
147  wl_new_0/sc_.h_sl[sl], wc_.vga_sl[sl],
148  wc_.vgn_sl[sl], wc_.vgm_sl[sl],
149  wc_.wc_sat_sl[sl], wc_.wc_res_sl[sl]));
150  double const capillary_pressure_1( ldndc::capillary_pressure(
151  wl_new_1/sc_.h_sl[sl+1], wc_.vga_sl[sl+1],
152  wc_.vgn_sl[sl+1], wc_.vgm_sl[sl+1],
153  wc_.wc_sat_sl[sl], wc_.wc_res_sl[sl+1]));
154 
155  double const kust( cbm::flt_greater( capillary_pressure_0, capillary_pressure_1) ? kust_1 : kust_0 );
156  double const flow( (capillary_pressure_1 - capillary_pressure_0) / (0.5 * (sc_.h_sl[sl] + sc_.h_sl[sl+1])) * kust);
157 
158  /* downward flow*/
159  if ( cbm::flt_greater_zero( flow))
160  {
161  double const left( wl_sl[sl] + EcHySoilWaterChange( sl) - (wc_.wc_res_sl[sl] * sc_.h_sl[sl]));
162  double const space( 0.999 * pore_space( sl+1) - wc_.ice_sl[sl+1] * sc_.h_sl[sl+1]
163  - (wl_sl[sl+1] + EcHySoilWaterChange( sl+1)));
164 
165  if ( cbm::flt_greater_zero( left) &&
166  cbm::flt_greater_zero( space))
167  {
168  double const bound_flow( cbm::bound_max( flow, std::min( left, space)) / static_cast<double>(STEPS));
169  cr_fill_sl[sl] -= bound_flow;
170  cr_fill_sl[sl+1] += bound_flow;
171  }
172  }
173  /* upward flow */
174  else if ( cbm::flt_less( flow, 0.0))
175  {
176  double const left( wl_sl[sl+1] + EcHySoilWaterChange( sl+1) - (wc_.wc_res_sl[sl+1] * sc_.h_sl[sl+1]));
177  double const space( 0.999 * pore_space( sl) - wc_.ice_sl[sl] * sc_.h_sl[sl]
178  - (wl_sl[sl] + EcHySoilWaterChange( sl)));
179 
180  if ( cbm::flt_greater_zero( left) &&
181  cbm::flt_greater_zero( space))
182  {
183  double const bound_flow( cbm::bound_max( -flow, std::min( left, space)) / static_cast<double>(STEPS));
184  cr_fill_sl[sl] += bound_flow;
185  cr_fill_sl[sl+1] -= bound_flow;
186  }
187  }
188  }
189 
190  size_t sl( soillayers_in->soil_layer_cnt()-1);
191  double const layer_midpoint_depth( sc_.depth_sl[sl] - 0.5 * sc_.h_sl[sl]);
192  if ( cbm::flt_greater( gw_depth_static, layer_midpoint_depth))
193  {
194  /* Water contents with until now calculated water balance */
195  double const wl_new( wl_sl[sl] + EcHySoilWaterChange( sl));
196 
197  double const wc_vg( cbm::bound( wc_.wc_res_sl[sl], wl_new / sc_.h_sl[sl], wc_.wc_sat_sl[sl]));
198 
199  /* Unsaturated hydraulic conductivity with until now calculated water balance */
200  double const kust( cbm::bound_min( 0.0,
201  ldndc::hydraulic_conductivity(
202  wc_vg, wc_.vgm_sl[sl], wc_.mvg_tau_sl[sl],
203  wc_.wc_sat_sl[sl], wc_.wc_res_sl[sl],
204  1.0/double(STEPS)*kst_sl[sl])));
205 
206  double const capillary_pressure( ldndc::capillary_pressure(
207  wl_new/sc_.h_sl[sl], wc_.vga_sl[sl],
208  wc_.vgn_sl[sl], wc_.vgm_sl[sl],
209  wc_.wc_sat_sl[sl], wc_.wc_res_sl[sl]));
210 
211  /* upward flow */
212  double const flow( -capillary_pressure / (gw_depth_static - layer_midpoint_depth) * kust);
213  if ( cbm::flt_less( flow, 0.0))
214  {
215  double const space( 0.999 * pore_space( sl) - wc_.ice_sl[sl] * sc_.h_sl[sl]
216  - (wl_sl[sl] + EcHySoilWaterChange( sl)));
217  if ( cbm::flt_greater_zero( space))
218  {
219  double const bound_flow( cbm::bound_max( -flow, 1.0 / static_cast<double>(STEPS) * space));
220  cr_fill_sl[sl] += bound_flow;
221  cr_fill_groundwater += bound_flow;
222  }
223  }
224  }
225  }
226  }
227 
228  return LDNDC_ERR_OK;
229 }
double gw_fill_surface
Definition: echy.h:125
lvector< double > cr_fill_sl
Definition: echy.h:94
double gw_depth_static
Definition: echy.h:74
double cr_fill_groundwater
Definition: echy.h:128
lvector< double > wl_sl
Definition: echy.h:113
lvector< double > gw_fill_sl
Definition: echy.h:97
double EcHySoilWaterChange(size_t)
Definition: echy.cpp:449
lvector< double > kst_sl
Definition: echy.h:109
Here is the call graph for this function:
Here is the caller graph for this function:

◆ EcHyIntegration()

lerr_t ldndc::EcHy::EcHyIntegration ( )
private

...

Integrates all water state variables.

References bypass_fill_sl, canopy_snowmelt, canopy_water, EcHySoilWaterChange(), ev_surfacewater, gw_fill_surface, runoff, throughfall_snow, throughfall_water, wl_sl, and wlfl_sl.

Referenced by solve().

462 {
463  canopy_snow = cbm::bound_min( 0.0,
464  canopy_snow - canopy_snowmelt);
465  surface_snow = cbm::bound_min( 0.0,
466  surface_snow
468  - surface_snowmelt);
469 
470  canopy_water = cbm::bound_min( 0.0,
472  + canopy_snowmelt);
473  surface_water = cbm::bound_min( 0.0,
474  surface_water
475  + throughfall_water + surface_snowmelt + gw_fill_surface + irrigation
476  - ev_surfacewater - wlfl_sl[0] - runoff - bypass_fill_sl.sum());
477 
478  for (size_t sl = 0; sl < soillayers_in->soil_layer_cnt(); sl++)
479  {
480  wl_sl[sl] = cbm::bound_min( 0.0, wl_sl[sl] + EcHySoilWaterChange( sl));
481  wc_.mskpa_sl[sl] = ldndc::hydrology::capillary_pressure( wl_sl[sl]/sc_.h_sl[sl], wc_.vga_sl[sl],
482  wc_.vgn_sl[sl], wc_.vgm_sl[sl],
483  wc_.wc_sat_sl[sl], wc_.wc_res_sl[sl]);
484  }
485 
486  return LDNDC_ERR_OK;
487 }
double gw_fill_surface
Definition: echy.h:125
lvector< double > bypass_fill_sl
Definition: echy.h:100
double throughfall_water
Definition: echy.h:137
lvector< double > wl_sl
Definition: echy.h:113
double throughfall_snow
Definition: echy.h:134
double canopy_snowmelt
Definition: echy.h:140
double canopy_water
Definition: echy.h:144
double runoff
Definition: echy.h:131
double ev_surfacewater
Definition: echy.h:103
double EcHySoilWaterChange(size_t)
Definition: echy.cpp:449
lvector< double > wlfl_sl
Definition: echy.h:91
Here is the call graph for this function:
Here is the caller graph for this function:

◆ EcHySoilWaterChange()

double ldndc::EcHy::EcHySoilWaterChange ( size_t  _sl)
private

Integrates all water state variables.

References cr_fill_sl, evsws_sl, gw_fill_sl, trwl_sl, and wlfl_sl.

Referenced by EcHyGetAvailableWaterEvaporation(), EcHyGetAvailableWaterTranspiration(), EcHyGroundwater(), EcHyIntegration(), and EcHyIrrigation().

451 {
452  return wlfl_sl[_sl] - wlfl_sl[_sl+1] + cr_fill_sl[_sl] - trwl_sl[_sl] - evsws_sl[_sl] + gw_fill_sl[_sl];
453 }
lvector< double > cr_fill_sl
Definition: echy.h:94
lvector< double > trwl_sl
Definition: echy.h:83
lvector< double > evsws_sl
Definition: echy.h:106
lvector< double > gw_fill_sl
Definition: echy.h:97
lvector< double > wlfl_sl
Definition: echy.h:91
Here is the caller graph for this function:

◆ solve()

lerr_t ldndc::EcHy::solve ( )

Kicks off computation for one time step.

References EcHyBalanceCheck(), EcHyBypassFlow(), EcHyEvapotranspiration(), EcHyFlood(), EcHyGroundwater(), EcHyIntegration(), EcHyIrrigation(), EcHyPercolation(), EcHyreset(), EcHySnowIce(), EcHyStepExit(), EcHyStepInit(), kst_bottom, kst_sl, runoff, runoff_method, throughfall_water, and wlfl_sl.

46 {
47  /* reset of all fluxes */
48  EcHyreset();
49 
50  /* flooding events */
51  lerr_t rc = EcHyFlood();
52  if ( rc != LDNDC_ERR_OK)
53  {
54  KLOGERROR("Handling flooding event failed in: ", name());
55  return rc;
56  }
57 
58  /* tasks:
59  * - update internal state (e.g., throughfall_water, ...)
60  * - calculate evapotranspiration on demand
61  */
62  rc = EcHyStepInit();
63  if ( rc != LDNDC_ERR_OK)
64  { return rc; }
65 
66  /* begin water balance */
67  double balance( -1.0);
68  EcHyBalanceCheck( balance);
69 
70  /* snow and ice calculated */
71  EcHySnowIce();
72 
73  /*
74  * apply irrigation triggered by
75  * - irrigation events
76  * - flooding events
77  */
79 
80  double const potential_infiltration( surface_water + irrigation + throughfall_water + surface_snowmelt);
81  double bypass_flow( m_param->CRACK_FRACTION() * potential_infiltration);
82 
83  /* bypass flow */
84  EcHyBypassFlow( m_param->CRACK_DEPTH(), bypass_flow);
85  double const infiltration( potential_infiltration - bypass_flow);
86 
87  /* downward water flow */
88  wlfl_sl[0] = cbm::bound_max( infiltration, kst_sl[0]);
89  for ( size_t sl = 0; sl < soillayers_in->soil_layer_cnt(); ++sl)
90  {
91  EcHyPercolation( 1, sl);
92  }
93 
94  if ( cbm::is_valid( kst_bottom))
95  {
96  wlfl_sl[soillayers_in->soil_layer_cnt()] = cbm::bound_max( wlfl_sl[soillayers_in->soil_layer_cnt()],
97  kst_bottom);
98  }
99  if ( cbm::is_valid( kst_bottom_gw_lateral))
100  {
101  wlfl_sl[soillayers_in->soil_layer_cnt()] = cbm::bound_max( wlfl_sl[soillayers_in->soil_layer_cnt()],
102  kst_bottom_gw_lateral);
103  }
104  if ( cbm::is_valid( kst_bottom_gw_vertical))
105  {
106  wlfl_sl[soillayers_in->soil_layer_cnt()] = cbm::bound_max( wlfl_sl[soillayers_in->soil_layer_cnt()],
107  kst_bottom_gw_vertical);
108  }
109 
111 
112  /* upward water flow */
113  for ( size_t sl = soillayers_in->soil_layer_cnt(); sl-- > 0; )
114  {
115  EcHyPercolation( 2, sl);
116  }
117 
118  /* runoff */
119  if ( runoff_method == "curvenumber")
120  {
121  double const surface_water_in_mm( surface_water * cbm::MM_IN_M);
122  double const curvenumber( 70.0);
123 
124  //retention parameter [mm]
125  double const retention_factor( 25.4 * (1000.0 / curvenumber - 10));
126 
127  //runoff [mm]
128  double const q_surf( cbm::sqr( surface_water_in_mm) /
129  ((surface_water_in_mm + retention_factor) * lclock()->time_resolution()));
130 
131  runoff = cbm::bound( 0.0,
132  q_surf * cbm::M_IN_MM,
133  0.99 * (surface_water + irrigation + throughfall_water + surface_snowmelt
134  - wlfl_sl[0] - bypass_flow));
135  }
136  else
137  {
138  double const f_runoff( cbm::bound_max( m_param->FRUNOFF() / lclock()->time_resolution(), 1.0));
139  runoff = cbm::bound_min( 0.0, f_runoff * (surface_water + irrigation + throughfall_water + surface_snowmelt
140  - wlfl_sl[0] - bypass_flow - bund_height));
141  }
142 
143  /* groundwater interaction:
144  * - set soil layers water-saturated
145  * - capillary rise
146  */
147  EcHyGroundwater();
148 
149  /* integration of state variables */
150  EcHyIntegration();
151 
152  /* update external state */
153  EcHyStepExit();
154 
155  /* perform water balance */
156  rc = EcHyBalanceCheck( balance);
157  if ( rc){ return rc; }
158 
159  rc = EcHy_check_for_negative_value("exit");
160  if ( rc){ return rc; }
161 
162  return LDNDC_ERR_OK;
163 }
lerr_t EcHySnowIce()
Calls SnowDNDC for the calculation of snowpack and soil ice formation.
Definition: echy-snow.cpp:21
lerr_t EcHyFlood()
sets hydrologic conditions during flooding events, e.g.,
Definition: echy-management.cpp:17
void EcHyreset()
...
Definition: echy.cpp:171
lerr_t EcHyBypassFlow(double, double &)
Calculates water percolation within the soil profile.
double throughfall_water
Definition: echy.h:137
lerr_t EcHyStepInit()
...
Definition: echy.cpp:203
lerr_t EcHyIntegration()
...
Definition: echy.cpp:461
lerr_t EcHyEvapotranspiration()
Calculates evapotranspiration within the soil profile.
cbm::string_t runoff_method
Definition: echy.h:196
double kst_bottom
Definition: echy.h:69
double runoff
Definition: echy.h:131
lerr_t EcHyGroundwater()
...
Definition: echy-groundwater.cpp:19
lerr_t EcHyStepExit()
...
Definition: echy.cpp:330
lvector< double > kst_sl
Definition: echy.h:109
lerr_t EcHyPercolation(size_t, size_t)
Calculates water percolation within the soil profile.
lerr_t EcHyBalanceCheck(double &)
...
Definition: echy.cpp:495
lerr_t EcHyIrrigation()
Irrigation.
Definition: echy-management.cpp:91
lvector< double > wlfl_sl
Definition: echy.h:91
Here is the call graph for this function:

Member Data Documentation

◆ accumulated_irrigation_old

double ldndc::EcHy::accumulated_irrigation_old
private

Accumulated irrigation of last time step [m]

Referenced by EcHyIrrigation().

◆ accumulated_potentialtranspiration_old

double ldndc::EcHy::accumulated_potentialtranspiration_old
private

Accumulated potential transpiration of last time step [m]

Referenced by EcHyPotentialEvapotranspiration().

◆ bypass_fill_sl

lvector< double > ldndc::EcHy::bypass_fill_sl
private

Soillayer water input due to bypass flow

Referenced by EcHyIntegration(), EcHyPotentialEvapotranspiration(), and EcHyreset().

◆ canopy_snowmelt

double ldndc::EcHy::canopy_snowmelt
private

Snow melting

Referenced by EcHyIntegration(), and EcHySnowIce().

◆ canopy_water

double ldndc::EcHy::canopy_water
private

◆ cr_fill_groundwater

double ldndc::EcHy::cr_fill_groundwater
private

Water addition to last soil layer from groundwater water by cappillary rise (only used for water balance calculation)

Referenced by EcHyBalanceCheck(), EcHyGroundwater(), and EcHyreset().

◆ cr_fill_sl

lvector< double > ldndc::EcHy::cr_fill_sl
private

Soillayer water input due to capillary rise

Referenced by EcHyGroundwater(), EcHyreset(), and EcHySoilWaterChange().

◆ daily_potential_evapotranspiration

double ldndc::EcHy::daily_potential_evapotranspiration
private

◆ daily_potential_leaf_evaporation

double ldndc::EcHy::daily_potential_leaf_evaporation
private

◆ daily_potential_soil_evaporation

double ldndc::EcHy::daily_potential_soil_evaporation
private

◆ daily_potential_transpiration

double ldndc::EcHy::daily_potential_transpiration
private

◆ ev_leaf

double ldndc::EcHy::ev_leaf
private

Evaporation from plant surface

Referenced by EcHyBalanceCheck(), EcHyPotentialEvapotranspiration(), and EcHyStepExit().

◆ ev_surfacewater

double ldndc::EcHy::ev_surfacewater
private

Evaporation from surface water

Referenced by EcHyBalanceCheck(), EcHyIntegration(), EcHyPotentialEvapotranspiration(), and EcHyreset().

◆ evapotranspiration_method

cbm::string_t ldndc::EcHy::evapotranspiration_method
private

◆ evsws_sl

lvector< double > ldndc::EcHy::evsws_sl
private

◆ gw_depth_static

double ldndc::EcHy::gw_depth_static
private

Depth of groundwater table [m]

Referenced by EcHyGroundwater(), and EcHyStepInit().

◆ gw_fill_sl

lvector< double > ldndc::EcHy::gw_fill_sl
private

Soillayer water input due to groundwater flow

Referenced by EcHyBalanceCheck(), EcHyGroundwater(), EcHyreset(), and EcHySoilWaterChange().

◆ gw_fill_surface

double ldndc::EcHy::gw_fill_surface
private

Water addition to surface water from groundwater water boundary condition

Referenced by EcHyBalanceCheck(), EcHyGroundwater(), EcHyIntegration(), and EcHyreset().

◆ kst_bottom

double ldndc::EcHy::kst_bottom
private

Saturated hydraulic conductivity below last soil layer [cm:min-1]

Referenced by EcHyStepInit(), and solve().

◆ kst_sl

lvector< double > ldndc::EcHy::kst_sl
private

Saturated hydraulic conductivity

Referenced by EcHyCapillaryRise(), EcHyFlood(), EcHyGroundwater(), and solve().

◆ m_icecontent_in

WaterCycleSnowDNDC::IceContentStateIn ldndc::EcHy::m_icecontent_in
private

...

Referenced by EcHySnowIce().

◆ runoff

double ldndc::EcHy::runoff
private

Lateral surface runoff

Referenced by EcHyBalanceCheck(), EcHyIntegration(), EcHyreset(), EcHyStepExit(), and solve().

◆ runoff_method

cbm::string_t ldndc::EcHy::runoff_method
private

...

Referenced by solve().

◆ thornthwaite_heat_index

double ldndc::EcHy::thornthwaite_heat_index
private

◆ throughfall_snow

double ldndc::EcHy::throughfall_snow
private

◆ throughfall_water

double ldndc::EcHy::throughfall_water
private

◆ trwl_sl

lvector< double > ldndc::EcHy::trwl_sl
private

Water withdrawl by transpiration [m d−1]

Referenced by EcHyBalanceCheck(), EcHyPotentialEvapotranspiration(), EcHyreset(), EcHySoilWaterChange(), and EcHyStepExit().

◆ wl_sl

◆ wlfc_sl

lvector< double > ldndc::EcHy::wlfc_sl
private

Amount of water in soil layer at field capacity

Referenced by EcHyIrrigation(), and EcHyPotentialEvapotranspiration().

◆ wlfl_sl

lvector< double > ldndc::EcHy::wlfl_sl
private

Water flux at boundaries of soil layer [m d-1] the flux of water between soil layer is tracked by wlfl (mm d−1). in total, there are nl+1 flow rates, where nl is the number of soil layers, wlfl[1] is the flow rate between the ponded water layer and the soil surface, wlfl[2] is the flow rate between soil layer 1 and soil layer 2, etc.

Referenced by EcHyBalanceCheck(), EcHyIntegration(), EcHyPotentialEvapotranspiration(), EcHyreset(), EcHySoilWaterChange(), EcHyStepExit(), and solve().

◆ wlwp_sl

lvector< double > ldndc::EcHy::wlwp_sl
private

Amount of water in soil layer at wilting point

Referenced by EcHyGetWiltingPoint().