LandscapeDNDC  1.36.0
ldndc::EcHy Class Reference

Watercycle model EcosystemHydrology - EcHy. More...

Inherits ldndc::MBE_LegacyModel.

Public Member Functions

lerr_t solve ()
 

Private Member Functions

lerr_t EcHyIrrigation ()
 Irrigation.
 
lerr_t EcHyFlood ()
 sets hydrologic conditions during flooding events, e.g., More...
 
lerr_t EcHyPercolation (size_t, size_t)
 Calculates water percolation within the soil profile.
 
lerr_t EcHyBypassFlow (double, double &)
 Calculates water percolation within the soil profile.
 
lerr_t EcHyEvapotranspiration ()
 Calculates evapotranspiration within the soil profile.
 
lerr_t EcHySubsl2 (double const &, double const &, int const &, double const &, double &)
 ... More...
 
lerr_t EcHyBalanceCheck (double &)
 ... More...
 
void EcHyreset ()
 ...
 
lerr_t EcHyGroundwater ()
 ... More...
 
lerr_t EcHyIntegration ()
 ... More...
 
lerr_t EcHyStepInit ()
 ...
 
lerr_t EcHyStepExit ()
 ...
 
double EcHyGetInterceptionCapacity ()
 ...
 
lerr_t EcHyCalculateLeafWaterDistribution (lvector_t< double > &)
 ...
 
lerr_t EcHyPotentialEvapotranspiration ()
 Calculates potential evapotranspiration. Specific concept can be given as model option.
 
lerr_t EcHySnowIce ()
 Calls SnowDNDC for the calculation of snowpack and soil ice formation.
 
double EcHyGetMinimumWater (size_t)
 ...
 
double EcHyGetWiltingPoint (size_t)
 ...
 
double EcHyGetAvailableWaterTranspiration (size_t)
 ...
 
double EcHyGetAvailableWaterEvaporation (size_t)
 ...
 
double EcHyGetRootLimitation (double)
 ...
 
double EcHyGetWaterLimitationTranspiration (double, size_t)
 ...
 
double EcHySoilWaterChange (size_t)
 

Private Attributes

double kst_bottom
 
double gw_depth_static
 
double accumulated_potentialtranspiration_old
 
double accumulated_irrigation_old
 
lvector_t< double > trwl_sl
 
lvector_t< double > wlfl_sl
 
lvector_t< double > cr_fill_sl
 
lvector_t< double > gw_fill_sl
 
lvector_t< double > bypass_fill_sl
 
lvector_t< double > wc_max_sl
 
lvector_t< double > wc_min_sl
 
lvector_t< double > evsws_sl
 
lvector_t< double > kst_sl
 
lvector_t< double > wl_sl
 
lvector_t< double > wlfc_sl
 
lvector_t< double > wlwp_sl
 
lvector_t< double > wlst_sl
 
double ev_leaf
 
double gw_fill_surface
 
double cr_fill_groundwater
 
double runoff
 
double snowfall
 
double throughfall
 
double interception_water
 
double thornthwaite_heat_index
 
double daily_potential_evapotranspiration
 
double daily_potential_leaf_evaporation
 
double daily_potential_soil_evaporation
 
double daily_potential_transpiration
 
WaterCycleSnowDNDC::IceContentStateIn m_icecontent_in
 
cbm::string_t evapotranspiration_method
 
cbm::string_t runoff_method
 

Detailed Description

Watercycle model EcosystemHydrology - EcHy.

Member Function Documentation

◆ EcHyBalanceCheck()

lerr_t ldndc::EcHy::EcHyBalanceCheck ( double &  _balance)
private

...

Checks balance between all incoming and outgoing water fluxes.

References cr_fill_groundwater, ev_leaf, evsws_sl, gw_fill_sl, gw_fill_surface, interception_water, runoff, snowfall, throughfall, trwl_sl, wl_sl, and wlfl_sl.

Referenced by solve().

445 {
446  double balance( interception_water + surface_water + surface_ice);
447  for ( size_t sl = 0; sl < soillayers_in->soil_layer_cnt(); ++sl)
448  {
449  balance += wl_sl[sl] + wc_.ice_sl[sl] * sc_.h_sl[sl];
450  }
451 
452  if ( _balance > 0.0)
453  {
454  balance += wlfl_sl[soillayers_in->soil_layer_cnt()]
455  + ev_leaf + evsws_sl.sum() + trwl_sl.sum() + runoff
457  - irrigation - throughfall - snowfall;
458 
459  double const balance_delta( std::abs( _balance - balance));
460  if ( cbm::flt_greater( balance_delta, 1.0e-4))
461  {
462  KLOGWARN( "Water leakage in: ", name(),
463  " Difference: ", balance - _balance);
464  return LDNDC_ERR_FAIL;
465  }
466  }
467  else
468  {
469  _balance = balance;
470  }
471 
472  return LDNDC_ERR_OK;
473 }
double gw_fill_surface
Definition: echy.h:126
double ev_leaf
Definition: echy.h:123
lvector_t< double > evsws_sl
Definition: echy.h:105
double cr_fill_groundwater
Definition: echy.h:129
double interception_water
Definition: echy.h:141
lvector_t< double > gw_fill_sl
Definition: echy.h:93
lvector_t< double > wl_sl
Definition: echy.h:111
double snowfall
Definition: echy.h:135
double runoff
Definition: echy.h:132
lvector_t< double > wlfl_sl
Definition: echy.h:87
double throughfall
Definition: echy.h:138
lvector_t< double > trwl_sl
Definition: echy.h:79
Here is the caller graph for this function:

◆ EcHyFlood()

lerr_t ldndc::EcHy::EcHyFlood ( )
private

sets hydrologic conditions during flooding events, e.g.,

Flooding.

  • surface water table
  • bund height

References kst_bottom, and kst_sl.

Referenced by solve().

18 {
19  lerr_t rc = m_eventflood.solve();
20  if ( rc != LDNDC_ERR_OK){ return rc; }
21 
22  bund_height = m_eventflood.get_bund_height();
23 
24  /* todo */
25  //irrigation_amount = m_eventflood.get_irrigation_amount();
26 
27  /* todo */
28  //double const irrigation_height = m_eventflood.get_irrigation_height();
29  double const max_percolation = m_eventflood.get_maximum_percolation();
30  double const water_table_flooding = m_eventflood.get_water_table();
31 
32 
33  irrigation_switch = NONE;
34  minimum_watertable_height = 0.0;
35  if ( cbm::is_valid( water_table_flooding))
36  {
37  if ( cbm::flt_greater_zero( water_table_flooding))
38  {
39  irrigation_switch = CONSTANT_POSITIVE_WATER_TABLE;
40  minimum_watertable_height = water_table_flooding;
41  bund_height = water_table_flooding;
42  }
43  else
44  {
45  irrigation_switch = CONSTANT_NEGATIVE_WATER_TABLE;
46  minimum_watertable_height = water_table_flooding;
47  bund_height = 0.0;
48  }
49  }
50 
51 
52  size_t sl_max( soillayers_in->soil_layer_cnt()-1);
53  if ( cbm::is_valid( max_percolation))
54  {
55  kst_sl[sl_max] = max_percolation / lclock()->time_resolution();
56  }
57  else
58  {
59  double const time_rate( 0.1 / lclock()->time_resolution());
60  kst_sl[sl_max] -= (kst_sl[sl_max] - kst_bottom) * time_rate;
61  }
62 
63  return LDNDC_ERR_OK;
64 }
lvector_t< double > kst_sl
Definition: echy.h:108
double kst_bottom
Definition: echy.h:67
Here is the caller graph for this function:

◆ EcHyGroundwater()

lerr_t ldndc::EcHy::EcHyGroundwater ( )
private

...

Negative groundwater table represents water on the soil surface

Negative groundwater table represents water on the soil surface

References cr_fill_groundwater, cr_fill_sl, EcHySoilWaterChange(), gw_depth_static, gw_fill_sl, gw_fill_surface, kst_sl, wc_max_sl, wc_min_sl, wl_sl, and wlst_sl.

Referenced by solve().

19 {
20  size_t sl_down( soillayers_in->soil_layer_cnt()-1);
21  if ( cbm::flt_greater( sc_.depth_sl[sl_down], gw_depth_static))
22  {
27  if ( cbm::flt_greater( -gw_depth_static, surface_water))
28  {
29  gw_fill_surface = -gw_depth_static - surface_water;
30  }
31 
32  //groundwater access
33  {
34  double const layer_midpoint_depth( 0.5 * sc_.h_sl[0]);
35  if ( cbm::flt_greater_equal( layer_midpoint_depth, gw_depth_static))
36  {
37  gw_fill_sl[0] = cbm::bound_min( 0.0,
38  wlst_sl[0] - (wl_sl[0] + EcHySoilWaterChange( 0)));
39  wc_.accumulated_groundwater_access += gw_fill_sl[0];
40  }
41  else
42  {
43  gw_fill_sl[0] = 0.0;
44  }
45  }
46 
47  for (size_t sl = 1; sl < soillayers_in->soil_layer_cnt()-1; sl++)
48  {
49  double const layer_midpoint_depth( sc_.depth_sl[sl] - 0.5 * sc_.h_sl[sl]);
50  if ( cbm::flt_greater_equal( layer_midpoint_depth, gw_depth_static))
51  {
52  gw_fill_sl[sl] = cbm::bound_min( 0.0,
53  wlst_sl[sl] - (wl_sl[sl] + EcHySoilWaterChange( sl)));
54  wc_.accumulated_groundwater_access += gw_fill_sl[sl];
55  }
56  else
57  {
58  gw_fill_sl[sl] = 0.0;
59  }
60  }
61 
62  {
63  size_t sl_max( soillayers_in->soil_layer_cnt()-1);
64  double const layer_midpoint_depth( sc_.depth_sl[sl_max] - 0.5 * sc_.h_sl[sl_max]);
65  if ( cbm::flt_greater_equal( layer_midpoint_depth, gw_depth_static))
66  {
67  gw_fill_sl[sl_max] = cbm::bound_min( 0.0,
68  wlst_sl[sl_max] - (wl_sl[sl_max] + EcHySoilWaterChange( sl_max)));
69  wc_.accumulated_groundwater_access += gw_fill_sl[sl_max];
70  }
71  else
72  {
73  gw_fill_sl[sl_max] = 0.0;
74  }
75  }
76  }
77 
78  //capillary rise
79  if ( m_param->WCDNDC_HAVE_CAPILLARY_ACTION())
80  {
81  size_t const STEPS( 10);
82  for (size_t steps = 0; steps < STEPS; steps++)
83  {
84  for (size_t sl = 0; sl < soillayers_in->soil_layer_cnt()-1; sl++)
85  {
86  double const layer_midpoint_depth( sc_.depth_sl[sl] - 0.5 * sc_.h_sl[sl]);
87  if ( cbm::flt_greater_equal( layer_midpoint_depth, gw_depth_static))
88  {
89  break;
90  }
91 
92  /* Water contents with until now calculated water balance */
93  double const wl_new_0( wl_sl[sl] + EcHySoilWaterChange( sl));
94  double const wl_new_1( wl_sl[sl+1] + EcHySoilWaterChange( sl+1));
95 
96  double const wc_vg_0( cbm::bound( wc_min_sl[sl], wl_new_0 / sc_.h_sl[sl], wc_max_sl[sl]));
97  double const wc_vg_1( cbm::bound( wc_min_sl[sl+1], wl_new_1 / sc_.h_sl[sl+1], wc_max_sl[sl+1]));
98 
99  /* Unsaturated hydraulic conductivity with until now calculated water balance */
100  double const kust_0( cbm::bound_min( 0.0,
101  ldndc::hydrology::hydraulic_conductivity(
102  wc_vg_0, sc_.vgm_sl[sl],
103  wc_max_sl[sl], wc_min_sl[sl], 1.0/double(STEPS)*kst_sl[sl])));
104  double const kust_1( cbm::bound_min( 0.0,
105  ldndc::hydrology::hydraulic_conductivity(
106  wc_vg_1, sc_.vgm_sl[sl+1],
107  wc_max_sl[sl+1], wc_min_sl[sl+1], 1.0/double(STEPS)*kst_sl[sl+1])));
108 
109  double const capillary_pressure_0( ldndc::hydrology::capillary_pressure(
110  wl_new_0/sc_.h_sl[sl], sc_.vga_sl[sl], sc_.vgn_sl[sl], sc_.vgm_sl[sl],
111  wc_max_sl[sl], wc_min_sl[sl]));
112  double const capillary_pressure_1( ldndc::hydrology::capillary_pressure(
113  wl_new_1/sc_.h_sl[sl+1], sc_.vga_sl[sl+1], sc_.vgn_sl[sl+1], sc_.vgm_sl[sl+1],
114  wc_max_sl[sl], wc_min_sl[sl+1]));
115 
116  double const kust( cbm::flt_greater( capillary_pressure_0, capillary_pressure_1) ? kust_1 : kust_0 );
117  double const flow( (capillary_pressure_1 - capillary_pressure_0) / (0.5 * (sc_.h_sl[sl] + sc_.h_sl[sl+1])) * kust);
118 
119  /* downward flow*/
120  if ( cbm::flt_greater_zero( flow))
121  {
122  double const left( wl_sl[sl] + EcHySoilWaterChange( sl) - (wc_min_sl[sl] * sc_.h_sl[sl]));
123  double const space( wlst_sl[sl+1] - (wl_sl[sl+1] + EcHySoilWaterChange( sl+1)));
124 
125  if ( cbm::flt_greater_zero( left) &&
126  cbm::flt_greater_zero( space))
127  {
128  double const bound_flow( 1.0 / static_cast<double>(STEPS) * cbm::bound_max( flow, std::min( left, space)));
129  cr_fill_sl[sl] -= bound_flow;
130  cr_fill_sl[sl+1] += bound_flow;
131  }
132  }
133  /* upward flow */
134  else if ( cbm::flt_less( flow, 0.0))
135  {
136  double const left( wl_sl[sl+1] + EcHySoilWaterChange( sl+1) - (wc_min_sl[sl+1] * sc_.h_sl[sl+1]));
137  double const space( wlst_sl[sl] - (wl_sl[sl] + EcHySoilWaterChange( sl)));
138 
139  if ( cbm::flt_greater_zero( left) &&
140  cbm::flt_greater_zero( space))
141  {
142  double const bound_flow( cbm::bound_max( -flow, 1.0 / static_cast<double>(STEPS) * std::min( left, space)));
143  cr_fill_sl[sl] += bound_flow;
144  cr_fill_sl[sl+1] -= bound_flow;
145  }
146  }
147  }
148 
149  size_t sl( soillayers_in->soil_layer_cnt()-1);
150  double const layer_midpoint_depth( sc_.depth_sl[sl] - 0.5 * sc_.h_sl[sl]);
151  if ( cbm::flt_greater( gw_depth_static, layer_midpoint_depth))
152  {
153  /* Water contents with until now calculated water balance */
154  double const wl_new( wl_sl[sl] + EcHySoilWaterChange( sl));
155 
156  double const wc_vg( cbm::bound( wc_min_sl[sl], wl_new / sc_.h_sl[sl], wc_max_sl[sl]));
157 
158  /* Unsaturated hydraulic conductivity with until now calculated water balance */
159  double const kust( cbm::bound_min( 0.0,
160  ldndc::hydrology::hydraulic_conductivity(
161  wc_vg, sc_.vgm_sl[sl],
162  wc_max_sl[sl], wc_min_sl[sl], 1.0/double(STEPS)*kst_sl[sl])));
163 
164  double const capillary_pressure( ldndc::hydrology::capillary_pressure(
165  wl_new/sc_.h_sl[sl], sc_.vga_sl[sl], sc_.vgn_sl[sl], sc_.vgm_sl[sl],
166  wc_max_sl[sl], wc_min_sl[sl]));
167 
168  /* upward flow */
169  double const flow( -capillary_pressure / (gw_depth_static - layer_midpoint_depth) * kust);
170  if ( cbm::flt_less( flow, 0.0))
171  {
172  double const space( wlst_sl[sl] - (wl_sl[sl] + EcHySoilWaterChange( sl)));
173  if ( cbm::flt_greater_zero( space))
174  {
175  double const bound_flow( cbm::bound_max( -flow, 1.0 / static_cast<double>(STEPS) * space));
176  cr_fill_sl[sl] += bound_flow;
177  cr_fill_groundwater += bound_flow;
178  }
179  }
180  }
181  }
182  }
183 
184  return LDNDC_ERR_OK;
185 }
double gw_fill_surface
Definition: echy.h:126
double gw_depth_static
Definition: echy.h:70
lvector_t< double > kst_sl
Definition: echy.h:108
double cr_fill_groundwater
Definition: echy.h:129
lvector_t< double > wc_max_sl
Definition: echy.h:99
lvector_t< double > gw_fill_sl
Definition: echy.h:93
lvector_t< double > wl_sl
Definition: echy.h:111
lvector_t< double > wc_min_sl
Definition: echy.h:102
double EcHySoilWaterChange(size_t)
Definition: echy.cpp:407
lvector_t< double > wlst_sl
Definition: echy.h:120
lvector_t< double > cr_fill_sl
Definition: echy.h:90
Here is the call graph for this function:
Here is the caller graph for this function:

◆ EcHyIntegration()

lerr_t ldndc::EcHy::EcHyIntegration ( )
private

...

Integrates all water state variables.

References bypass_fill_sl, EcHySoilWaterChange(), gw_fill_surface, runoff, throughfall, wc_max_sl, wc_min_sl, wl_sl, and wlfl_sl.

Referenced by solve().

421 {
422  surface_water = cbm::bound_min( 0.0,
423  surface_water +
424  (throughfall + gw_fill_surface + irrigation - wlfl_sl[0] - runoff - bypass_fill_sl.sum()));
425 
426  for (size_t sl = 0; sl < soillayers_in->soil_layer_cnt(); sl++)
427  {
428  wl_sl[sl] = cbm::bound_min( 0.0, wl_sl[sl] + EcHySoilWaterChange( sl));
429  wc_.mskpa_sl[sl] = ldndc::hydrology::capillary_pressure( wl_sl[sl]/sc_.h_sl[sl], sc_.vga_sl[sl],
430  sc_.vgn_sl[sl], sc_.vgm_sl[sl], wc_max_sl[sl], wc_min_sl[sl]);
431  }
432 
433  return LDNDC_ERR_OK;
434 }
double gw_fill_surface
Definition: echy.h:126
lvector_t< double > wc_max_sl
Definition: echy.h:99
lvector_t< double > wl_sl
Definition: echy.h:111
lvector_t< double > wc_min_sl
Definition: echy.h:102
double runoff
Definition: echy.h:132
lvector_t< double > wlfl_sl
Definition: echy.h:87
double throughfall
Definition: echy.h:138
double EcHySoilWaterChange(size_t)
Definition: echy.cpp:407
lvector_t< double > bypass_fill_sl
Definition: echy.h:96
Here is the call graph for this function:
Here is the caller graph for this function:

◆ EcHySoilWaterChange()

double ldndc::EcHy::EcHySoilWaterChange ( size_t  _sl)
private

Integrates all water state variables.

References cr_fill_sl, evsws_sl, gw_fill_sl, trwl_sl, and wlfl_sl.

Referenced by EcHyGroundwater(), EcHyIntegration(), and EcHyIrrigation().

409 {
410  return wlfl_sl[_sl] - wlfl_sl[_sl+1] + cr_fill_sl[_sl] - trwl_sl[_sl] - evsws_sl[_sl] + gw_fill_sl[_sl];
411 }
lvector_t< double > evsws_sl
Definition: echy.h:105
lvector_t< double > gw_fill_sl
Definition: echy.h:93
lvector_t< double > wlfl_sl
Definition: echy.h:87
lvector_t< double > trwl_sl
Definition: echy.h:79
lvector_t< double > cr_fill_sl
Definition: echy.h:90
Here is the caller graph for this function:

◆ EcHySubsl2()

lerr_t ldndc::EcHy::EcHySubsl2 ( double const &  _cp,
double const &  _delta_z,
int const &  _sl,
double const &  _saturation,
double &  _flow 
)
private

...

This routine calculates the rate of capillary flow or percolation between groundwater table and root zone. The stationary flow is found by integration of dZL = K.d(MH)/(K + FLW), where Z= height above groundwater, MH= matric head, K= conductivity and FLW= chosen flow. In an iteration loop the correct flow is found. The integration goes at most over four intervals: [0,45], [45,170], [170,330] and [330,MH-rootzone] (last one on logarithmic scale).

Author
C. Rappoldt M. Wopereis
Date
January 1986, revised June 1990

Chapter 15 in documentation WOFOST Version 4.1 (1988)

References kst_sl.

216 {
217  //calculation of pf from matrix head
218  double pf( std::log10( _cp));
219 
220  //in case of small matric head (high water contents)
221  if ( cbm::flt_greater( 1.0, pf))
222  {
223  _flow = 0.0;
224  return LDNDC_ERR_OK;
225  }
226 
227  double elog10( 2.302585);
228  double logst4( 2.518514);
229 
230  double start[4] = {0.0, 45.0, 170.0, 330.0};
231 
232  //number and width of integration intervals
233  int iint( 0);
234  double del[4] = { 0.0, 0.0, 0.0, 0.0};
235  for (int i1 = 0; i1 < 4; i1++)
236  {
237  if (i1 < 3)
238  {
239  del[i1] = std::min( start[i1+1], _cp) - start[i1];
240  }
241  else
242  {
243  del[i1] = pf - logst4;
244  }
245  if (del[i1] <= 0.0)
246  {
247  break;
248  }
249  iint += 1;
250  }
251 
252  //preparation of three-point gaussian integration
253  double hulp[12] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
254  double conduc[12] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
255  for (int i1 = 0; i1 < iint; i1++)
256  {
257  for (int i2 = 0; i2 < 3; i2++)
258  {
259  double pgau[3] = {0.1127016654, 0.5, 0.8872983346};
260  double wgau[3] = {0.2777778, 0.4444444, 0.2777778};
261 
262  int i3( 3 * i1 + i2);
263 
264  //the three points in the full-width intervals are standard
265  double pfstan[9] = {0.705143, 1.352183, 1.601282, 1.771497, 2.031409, 2.192880, 2.274233, 2.397940, 2.494110};
266  double pfgau( pfstan[i3]);
267 
268  //the three points in the last interval are calculated
269  if ( i1 == (iint-1))
270  {
271  if ( iint < 4)
272  {
273  pfgau = std::log10( start[iint-1] + pgau[i2] * del[iint-1]);
274  }
275  else
276  {
277  pfgau = logst4 + pgau[i2] * del[iint-1];
278  }
279  }
280 
281  double const wcl_loc( ldndc::hydrology::water_content( std::exp(elog10 * pfgau), sc_.vga_sl[_sl], sc_.vgn_sl[_sl], sc_.vgm_sl[_sl], _saturation, 0.1));
282  conduc[i3] = ldndc::hydrology::hydraulic_conductivity(wcl_loc, sc_.vgm_sl[_sl], _saturation, sc_.wcmin_sl[_sl], kst_sl[_sl] * cbm::CM_IN_M);
283  hulp[i3] = del[i1] * wgau[i2] * conduc[i3];
284  if (i3 > 8)
285  {
286  hulp[i3] = hulp[i3] * elog10 * std::exp( elog10 * pfgau);
287  }
288  }
289  }
290 
291 
292  //setting upper and lower limit
293  double const wcl_loc( ldndc::hydrology::water_content( _cp, sc_.vga_sl[_sl], sc_.vgn_sl[_sl], sc_.vgm_sl[_sl], _saturation, 0.1));
294  double const kms( ldndc::hydrology::hydraulic_conductivity(wcl_loc, sc_.vgm_sl[_sl], _saturation, sc_.wcmin_sl[_sl], kst_sl[_sl] * cbm::CM_IN_M));
295  double fu( (_cp <= _delta_z) ? 0.0 : 1.27);
296  double fl( (_cp >= _delta_z) ? 0.0 : -kms);
297 
298 
299  if ( !cbm::flt_equal( _cp, _delta_z))
300  {
301  //iteration loop
302  int imax( 3 * iint);
303  for ( int i1 = 0; i1 < 14; i1++)
304  {
305  double flw( (fu + fl) / 2.0);
306  double df( (fu - fl) / 2.0);
307  if ( (df < 0.01) &&
308  ((df / std::abs(flw)) < 0.1))
309  {
310  break;
311  }
312 
313  double z( 0.0);
314  for ( int i2 = 0; i2 < imax; i2++)
315  {
316  z = z + hulp[i2] / (conduc[i2] + flw);
317  }
318  if (z >= _delta_z)
319  {
320  fl = flw;
321  }
322  if (z <= _delta_z)
323  {
324  fu = flw;
325  }
326  }
327  }
328 
329  //flow output in mm
330  _flow = 10.0 * (fu + fl) / 2.0;
331 
332  return LDNDC_ERR_OK;
333 }
lvector_t< double > kst_sl
Definition: echy.h:108

◆ solve()

lerr_t ldndc::EcHy::solve ( )

Kicks off computation for one time step.

References EcHyBalanceCheck(), EcHyBypassFlow(), EcHyEvapotranspiration(), EcHyFlood(), EcHyGroundwater(), EcHyIntegration(), EcHyIrrigation(), EcHyPercolation(), EcHyreset(), EcHySnowIce(), EcHyStepExit(), EcHyStepInit(), kst_bottom, kst_sl, runoff, runoff_method, throughfall, and wlfl_sl.

46 {
47  /* reset of all fluxes */
48  EcHyreset();
49 
50  /* flooding events */
51  lerr_t rc = EcHyFlood();
52  if ( rc != LDNDC_ERR_OK)
53  {
54  KLOGERROR("Handling flooding event failed in: ", name());
55  return rc;
56  }
57 
58  /* tasks:
59  * - update internal state (e.g., throughfall, ...)
60  * - calculate evapotranspiration on demand
61  */
62  rc = EcHyStepInit();
63  if ( rc != LDNDC_ERR_OK)
64  { return rc; }
65 
66  /* begin water balance */
67  double balance( -1.0);
68  EcHyBalanceCheck( balance);
69 
70  /* snow and ice calculated */
71  EcHySnowIce();
72 
73  /*
74  * apply irrigation triggered by
75  * - irrigation events
76  * - flooding events
77  */
79 
80  double const potential_infiltration( surface_water + irrigation + throughfall);
81  double bypass_flow( m_param->CRACK_FRACTION() * potential_infiltration);
82 
83  /* bypass flow */
84  EcHyBypassFlow( m_param->CRACK_DEPTH(), bypass_flow);
85  double const infiltration( potential_infiltration - bypass_flow);
86 
87  /* downward water flow */
88  wlfl_sl[0] = cbm::bound_max( infiltration, kst_sl[0]);
89  for ( size_t sl = 0; sl < soillayers_in->soil_layer_cnt(); ++sl)
90  {
91  EcHyPercolation( 1, sl);
92  }
93 
94  if ( cbm::flt_equal_zero( kst_bottom))
95  {
96  wlfl_sl[soillayers_in->soil_layer_cnt()] = 0.0;
97  }
98 
100 
101  /* upward water flow */
102  for ( int sl = soillayers_in->soil_layer_cnt()-1; sl >= 0; --sl)
103  {
104  EcHyPercolation( 2, sl);
105  }
106 
107  /* runoff */
108  if ( runoff_method == "curvenumber")
109  {
110  double const surface_water_in_mm( surface_water * cbm::MM_IN_M);
111  double const curvenumber( 70.0);
112 
113  //retention parameter [mm]
114  double const retention_factor( 25.4 * (1000.0 / curvenumber - 10));
115 
116  //runoff [mm]
117  double const q_surf( cbm::sqr( surface_water_in_mm) /
118  ((surface_water_in_mm + retention_factor) * lclock()->time_resolution()));
119 
120  runoff = cbm::bound( 0.0,
121  q_surf * cbm::M_IN_MM,
122  0.99 * (surface_water + throughfall + irrigation - wlfl_sl[0] - bypass_flow));
123  }
124  else
125  {
126  double const f_runoff( cbm::bound_max( m_param->FRUNOFF() / lclock()->time_resolution(), 1.0));
127  runoff = cbm::bound_min( 0.0, f_runoff * (surface_water + throughfall + irrigation - wlfl_sl[0] - bypass_flow - bund_height));
128  }
129 
130  /* groundwater interaction:
131  * - set soil layers water-saturated
132  * - capillary rise
133  */
134  EcHyGroundwater();
135 
136  /* integration of state variables */
137  EcHyIntegration();
138 
139  /* update external state */
140  EcHyStepExit();
141 
142  /* perform water balance */
143  rc = EcHyBalanceCheck( balance);
144  if ( rc){ return rc; }
145 
146  rc = EcHy_check_for_negative_value("exit");
147  if ( rc){ return rc; }
148 
149  return LDNDC_ERR_OK;
150 }
lvector_t< double > kst_sl
Definition: echy.h:108
lerr_t EcHySnowIce()
Calls SnowDNDC for the calculation of snowpack and soil ice formation.
lerr_t EcHyFlood()
sets hydrologic conditions during flooding events, e.g.,
Definition: echy-management.cpp:17
void EcHyreset()
...
Definition: echy.cpp:159
lerr_t EcHyBypassFlow(double, double &)
Calculates water percolation within the soil profile.
lerr_t EcHyStepInit()
...
Definition: echy.cpp:191
lerr_t EcHyIntegration()
...
Definition: echy.cpp:420
lerr_t EcHyEvapotranspiration()
Calculates evapotranspiration within the soil profile.
cbm::string_t runoff_method
Definition: echy.h:192
double kst_bottom
Definition: echy.h:67
double runoff
Definition: echy.h:132
lvector_t< double > wlfl_sl
Definition: echy.h:87
double throughfall
Definition: echy.h:138
lerr_t EcHyGroundwater()
...
Definition: echy-groundwater.cpp:18
lerr_t EcHyStepExit()
...
Definition: echy.cpp:297
lerr_t EcHyPercolation(size_t, size_t)
Calculates water percolation within the soil profile.
lerr_t EcHyBalanceCheck(double &)
...
Definition: echy.cpp:443
lerr_t EcHyIrrigation()
Irrigation.
Definition: echy-management.cpp:73
Here is the call graph for this function:

Member Data Documentation

◆ accumulated_irrigation_old

double ldndc::EcHy::accumulated_irrigation_old
private

Accumulated irrigation of last time step [m]

Referenced by EcHyIrrigation().

◆ accumulated_potentialtranspiration_old

double ldndc::EcHy::accumulated_potentialtranspiration_old
private

Accumulated potential transpiration of last time step [m]

Referenced by EcHyPotentialEvapotranspiration().

◆ bypass_fill_sl

lvector_t< double > ldndc::EcHy::bypass_fill_sl
private

Soillayer water input due to bypass flow

Referenced by EcHyIntegration(), and EcHyreset().

◆ cr_fill_groundwater

double ldndc::EcHy::cr_fill_groundwater
private

Water addition to last soil layer from groundwater water by cappillary rise (only used for water balance calculation)

Referenced by EcHyBalanceCheck(), EcHyGroundwater(), and EcHyreset().

◆ cr_fill_sl

lvector_t< double > ldndc::EcHy::cr_fill_sl
private

Soillayer water input due to capillary rise

Referenced by EcHyGroundwater(), EcHyreset(), and EcHySoilWaterChange().

◆ daily_potential_evapotranspiration

double ldndc::EcHy::daily_potential_evapotranspiration
private

◆ daily_potential_leaf_evaporation

double ldndc::EcHy::daily_potential_leaf_evaporation
private

◆ daily_potential_soil_evaporation

double ldndc::EcHy::daily_potential_soil_evaporation
private

◆ daily_potential_transpiration

double ldndc::EcHy::daily_potential_transpiration
private

◆ ev_leaf

double ldndc::EcHy::ev_leaf
private

Evaporation from plant surface

Referenced by EcHyBalanceCheck(), EcHyPotentialEvapotranspiration(), and EcHyStepExit().

◆ evapotranspiration_method

cbm::string_t ldndc::EcHy::evapotranspiration_method
private

◆ evsws_sl

lvector_t< double > ldndc::EcHy::evsws_sl
private

◆ gw_depth_static

double ldndc::EcHy::gw_depth_static
private

Depth of groundwater table [m]

Referenced by EcHyGroundwater(), and EcHyStepInit().

◆ gw_fill_sl

lvector_t< double > ldndc::EcHy::gw_fill_sl
private

Soillayer water input due to groundwater flow

Referenced by EcHyBalanceCheck(), EcHyGroundwater(), EcHyreset(), and EcHySoilWaterChange().

◆ gw_fill_surface

double ldndc::EcHy::gw_fill_surface
private

Water addition to surface water from groundwater water boundary condition

Referenced by EcHyBalanceCheck(), EcHyGroundwater(), EcHyIntegration(), and EcHyreset().

◆ interception_water

double ldndc::EcHy::interception_water
private

◆ kst_bottom

double ldndc::EcHy::kst_bottom
private

Saturated hydraulic conductivity below last soil layer [cm:min-1]

Referenced by EcHyFlood(), EcHyStepInit(), and solve().

◆ kst_sl

lvector_t< double > ldndc::EcHy::kst_sl
private

Saturated hydraulic conductivity

Referenced by EcHyFlood(), EcHyGroundwater(), EcHyStepInit(), EcHySubsl2(), and solve().

◆ m_icecontent_in

WaterCycleSnowDNDC::IceContentStateIn ldndc::EcHy::m_icecontent_in
private

...

◆ runoff

double ldndc::EcHy::runoff
private

Lateral surface runoff

Referenced by EcHyBalanceCheck(), EcHyIntegration(), EcHyreset(), EcHyStepExit(), and solve().

◆ runoff_method

cbm::string_t ldndc::EcHy::runoff_method
private

...

Referenced by solve().

◆ snowfall

double ldndc::EcHy::snowfall
private

Snowfall

Referenced by EcHyBalanceCheck(), and EcHyreset().

◆ thornthwaite_heat_index

double ldndc::EcHy::thornthwaite_heat_index
private

◆ throughfall

double ldndc::EcHy::throughfall
private

Throughfall to soil

Referenced by EcHyBalanceCheck(), EcHyIntegration(), EcHyStepExit(), EcHyStepInit(), and solve().

◆ trwl_sl

lvector_t< double > ldndc::EcHy::trwl_sl
private

Water withdrawl by transpiration [m d−1]

Referenced by EcHyBalanceCheck(), EcHyPotentialEvapotranspiration(), EcHyreset(), EcHySoilWaterChange(), and EcHyStepExit().

◆ wc_max_sl

lvector_t< double > ldndc::EcHy::wc_max_sl
private

Maximum water content

Referenced by EcHyGroundwater(), and EcHyIntegration().

◆ wc_min_sl

lvector_t< double > ldndc::EcHy::wc_min_sl
private

Minimum water content

Referenced by EcHyGetMinimumWater(), EcHyGroundwater(), and EcHyIntegration().

◆ wl_sl

lvector_t< double > ldndc::EcHy::wl_sl
private

◆ wlfc_sl

lvector_t< double > ldndc::EcHy::wlfc_sl
private

Amount of water in soil layer at field capacity

Referenced by EcHyGetAvailableWaterTranspiration(), EcHyGetWaterLimitationTranspiration(), and EcHyIrrigation().

◆ wlfl_sl

lvector_t< double > ldndc::EcHy::wlfl_sl
private

Water flux at boundaries of soil layer [m d-1] the flux of water between soil layer is tracked by wlfl (mm d−1). in total, there are nl+1 flow rates, where nl is the number of soil layers, wlfl[1] is the flow rate between the ponded water layer and the soil surface, wlfl[2] is the flow rate between soil layer 1 and soil layer 2, etc.

Referenced by EcHyBalanceCheck(), EcHyIntegration(), EcHyreset(), EcHySoilWaterChange(), EcHyStepExit(), and solve().

◆ wlst_sl

lvector_t< double > ldndc::EcHy::wlst_sl
private

Amount of water in soil layer at saturation

Referenced by EcHyGroundwater(), and EcHyIrrigation().

◆ wlwp_sl

lvector_t< double > ldndc::EcHy::wlwp_sl
private

Amount of water in soil layer at wilting point

Referenced by EcHyGetWiltingPoint().