LandscapeDNDC  1.36.0
MeTrx - Metabolism and Transport of x

User guide

MeTrx simulates carbon and nitrogen cycle of soils. Focus lies on the production and consumption of the greenhouse gases \( CO_2, CH_4 \) and \( N_2O \). Therewith related outputs include leaching of \( NO_3 \) and emissions of \( NH_3 \). Depending on the ecosystem of interest, several model options should be considered (see also: metrxoptions):

  • Forests:
    • Depending on litter fall, the amount of carbon in the litter layers (defined in the site file) may considerably change. This can result in a change of the height of the litter layer. Wether the height of the litter is allowed to change can be regulated by the model option: "nochangelitterheight"
  • Agricultural rice production systems:
    • Flooded agricultural rice systems are subject to the growth of algae. Wether algae growth sould be considered can be regulated by the model option: "algae"
  • Initial conditions of systems not in equilibrium, e.g., drained wetlands:
    • During the spin up phase, soil organic matter pools are intended to establish equilibrium conditions as best as possible by shifting carbon and nitrogen between soil organic matter pools. However, if the system is known not to be in equilibrium initially, e.g., drained wetlands, this can be considered by defining an annual carbon loss or build-up rate using the model option: "spinupdeltac"

Microbial processes are especially relevant in the upper soil layers. Choose a spatial discretization of at maximum 0.5 cm for the upper 1cm soil depth. For a soil depth greater 1cm and smaller 10 cm, a spatal discretization of 1-2 cm per soil layer is recommended.

Model structure

MeTrx requires further models for:

  • watercycle (e.g., soil water content)
  • plant growth (e.g., litter production / nitrogen uptake)

Model parameters

MeTrx includes the following siteparameters:

  • GROUNDWATER_NUTRIENT_RENEWAL
  • METRX_AMAX
  • METRX_AMAX_ALGAE
  • METRX_BETA_LITTER_TYPE
  • METRX_BIOSYNTH_EFF
  • METRX_CN_ALGAE
  • METRX_CN_FRAC_HUM3
  • METRX_CN_MIC_MAX
  • METRX_CN_MIC_MIN
  • METRX_D_EFF_REDUCTION
  • METRX_FE_REDUCTION
  • METRX_FRAC_FE_CH4_PROD
  • METRX_F_RANVF_1
  • METRX_F_RANVF_2
  • METRX_F_SANVF_1
  • METRX_F_SANVF_2
  • METRX_F_CONNECTIVITY_1
  • METRX_F_CONNECTIVITY_2
  • METRX_F_CH4_OXIDATION_T_EXP_1
  • METRX_F_CH4_OXIDATION_T_EXP_2
  • METRX_F_CH4_PRODUCTION_PH_1
  • METRX_F_CH4_PRODUCTION_PH_2
  • METRX_F_CH4_PRODUCTION_PH_3
  • METRX_F_CH4_PRODUCTION_T_EXP_1
  • METRX_F_CH4_PRODUCTION_T_EXP_2
  • METRX_F_CHEMODENIT_PH_1
  • METRX_F_CHEMODENIT_PH_2
  • METRX_F_CHEMODENIT_T_1
  • METRX_F_CHEMODENIT_T_2
  • METRX_F_MIC_M_WEIBULL_1
  • METRX_F_MIC_M_WEIBULL_2
  • METRX_F_DECOMP_M_WEIBULL_1
  • METRX_F_DECOMP_M_WEIBULL_2
  • METRX_F_DECOMP_T_EXP_1
  • METRX_F_DECOMP_T_EXP_2
  • METRX_F_DECOMP_PH_1
  • METRX_F_DECOMP_PH_2
  • METRX_F_DECOMP_CLAY_1
  • METRX_F_DECOMP_CLAY_2
  • METRX_F_MIC_T_EXP_1
  • METRX_F_MIC_T_EXP_2
  • METRX_F_DENIT_N2_1
  • METRX_F_DENIT_N2_2
  • METRX_F_DENIT_NO
  • METRX_F_DENIT_M_WEIBULL_1
  • METRX_F_DENIT_M_WEIBULL_2
  • METRX_F_DENIT_PH_1
  • METRX_F_DENIT_PH_2
  • METRX_F_DENIT_N2O_PH_1
  • METRX_F_DENIT_N2O_PH_2
  • METRX_F_N_ALGAE
  • METRX_F_N_CH4_OXIDATION
  • METRX_F_NIT_FRAC_MIC
  • METRX_F_NIT_NO_N2O_M_WEIBULL_1
  • METRX_F_NIT_NO_N2O_M_WEIBULL_2
  • METRX_F_NIT_NO_M_EXP_1
  • METRX_F_NIT_NO_M_EXP_2
  • METRX_F_NIT_NO_N2O_T_EXP_1
  • METRX_F_NIT_NO_N2O_T_EXP_2
  • METRX_MIC_EFF_AEROBIC_RESPIRATION
  • METRX_MIC_EFF_ANAEROBIC_RESPIRATION
  • METRX_MIC_EFF_METHANE_OXIDATION
  • METRX_MUEMAX_C_ALGAE
  • METRX_MUEMAX_C_CH4_OX
  • METRX_MUEMAX_C_CH4_PROD
  • METRX_MUEMAX_C_DENIT
  • METRX_MUEMAX_C_FERM
  • METRX_MUEMAX_C_MIC
  • METRX_MUEMAX_C_FE_RED
  • METRX_MUEMAX_H2_CH4_PROD
  • METRX_MUEMAX_N_ASSI
  • METRX_NITRIFY_MAX
  • METRX_KA_C_MIC
  • METRX_KF_NIT_NO_N2O
  • METRX_K_O2_CH4_PROD
  • METRX_K_O2_FE_RED
  • METRX_K_FE_FE_RED
  • METRX_KMM_AC_CH4_PROD
  • METRX_KMM_AC_FE_RED
  • METRX_KMM_H2_FE_RED
  • METRX_KMM_C_DENIT
  • METRX_KMM_CH4_CH4_OX
  • METRX_KMM_C_MIC
  • METRX_KMM_O2_NIT
  • METRX_KMM_H2_FERM
  • METRX_KMM_H2_CH4_PROD
  • METRX_KMM_N_ALGAE
  • METRX_KMM_N_CH4_OX
  • METRX_KMM_N_DENIT
  • METRX_KMM_N_MIC
  • METRX_KMM_NH4_NIT
  • METRX_KMM_NO2_NIT
  • METRX_KMM_O2_CH4_OX
  • METRX_KMM_O2_FE_OX
  • METRX_KMM_PH_INCREASE_FROM_UREA
  • METRX_KR_ANVF_DIFF_GAS
  • METRX_KR_ANVF_DIFF_LIQ
  • METRX_KR_FRAG_ALGAE
  • METRX_KR_FRAG_RAW_LITTER
  • METRX_KR_FRAG_STUBBLE
  • METRX_KR_FRAG_WOOD
  • METRX_KR_DC_AORG
  • METRX_KR_DC_CEL
  • METRX_KR_DC_HUM1
  • METRX_KR_DC_HUM2
  • METRX_KR_DC_HUM3
  • METRX_KR_DC_LIG
  • METRX_KR_DC_SOL
  • METRX_KR_DENIT_CHEMO
  • METRX_KR_OX_FE
  • METRX_KR_HU_AORG_HUM1
  • METRX_KR_HU_AORG_HUM2
  • METRX_KR_HU_CEL
  • METRX_KR_HU_SOL
  • METRX_KR_HU_HUM1
  • METRX_KR_HU_HUM2
  • METRX_KR_HU_LIG
  • METRX_KR_UREAHYDROLYSIS
  • METRX_KR_REDUCTION_CN
  • METRX_KR_REDUCTION_ANVF
  • METRX_KR_REDUCTION_CONIFEROUS
  • METRX_LIG_HUMIFICATION
  • METRX_RET_HUMUS
  • METRX_RET_LITTER
  • METRX_RET_MICROBES
  • METRX_TILL_STIMULATION_1
  • METRX_TILL_STIMULATION_2
  • METRX_V_EBULLITION
  • RETDOC
  • RETNH4
  • RETNO3
  • TEXP

Calibration of N trace gases

The calibration of nitrogen trace gas emissions primarily addresses microbial metabolism, anaerobic conditions, and transport. The processes of decomposition and humification of SOM should be excluded or managed carefully in order to avoid compromising the overall stability of SOM by inadvertently inducing unrealistically high losses or gains.

Nitrification

  • METRX_F_NIT_FRAC_MIC
  • METRX_KMM_NH4_NIT
  • METRX_KMM_NO2_NIT
  • METRX_KMM_O2_NIT
  • METRX_KF_NIT_NO_N2O
  • METRX_F_NIT_NO_N2O_M_WEIBULL_1
  • METRX_F_NIT_NO_M_EXP_1
  • METRX_F_NIT_NO_M_EXP_2
  • METRX_F_NIT_NO_N2O_T_EXP_1
  • METRX_F_NIT_NO_N2O_T_EXP_2

Denitrification

  • METRX_MUEMAX_C_DENIT
  • METRX_KMM_C_DENIT
  • METRX_KMM_N_DENIT
  • METRX_MIC_EFF_ANAEROBIC_RESPIRATION
  • METRX_F_DENIT_PH_1 (relevant for low pH only)
  • METRX_F_DENIT_PH_2 (relevant for low pH only)
  • METRX_F_DENIT_N2O_PH_1 (relevant for low pH only)
  • METRX_F_DENIT_N2O_PH_2 (relevant for low pH only)
  • METRX_F_DENIT_M_WEIBULL_1
  • METRX_F_DENIT_N2_1
  • METRX_F_DENIT_N2_2
  • METRX_F_DENIT_NO

Microbial N assimilation

  • METRX_MUEMAX_N_ASSI

Microbial turnover (decay constants)

  • METRX_AMAX
  • METRX_KA_C_MIC

Transport between aerobic/anaerobic microsites

  • METRX_KR_ANVF_DIFF_LIQ
  • METRX_KR_ANVF_DIFF_GAS

Anaerobicity

  • METRX_F_RANVF_1
  • METRX_F_RANVF_2
  • METRX_F_SANVF_1
  • METRX_F_SANVF_2

Determining ratio between CO2 and DOC production from microbial turnover

  • METRX_BIOSYNTH_EFF
  • METRX_CN_MIC_MIN
  • METRX_CN_MIC_MAX
  • METRX_MIC_EFF_AEROBIC_RESPIRATION

Decomposition/humification

  • METRX_KR_DC_AORG
  • METRX_KR_REDUCTION_ANVF

Model options

Available model options: Default options are marked with bold letters.

  • Algae (default: "algae" = no / yes) Set to yes for agricultural rice production ecosystems for which growth of algae should be considered.
  • Drywet (default: "drywet" = no / yes) Under construction.
  • Surface bulk, e.g., water table (default: "surfacebulk" = yes / no) Automatically includes additional surface layers in case surface water table builds up.
  • Freeze thaw (default: "freezethaw" = no / yes) Under construction.
  • Canopy transport (default: "canopytransport" = no / yes) Considers diffusive transport of \( NH_3 \) through the canopy.
  • River connection (default: "riverconnection" = no / yes) Considers adjacent river connection: Dissolved constituents of surface water are in equlibrium with the atmoshpere.
  • Change litter height (default: "nochangelitterheight" = no / yes ) Spatial discretization of litter height changes depending on litter input from vegetation.
  • Effective diffusion coefficient (default: "effectivediffusion" = parameter / millington_and_quirk_1961 ) Diffusion coefficients in the air phase are reduced due to soil tortuosity
  • Spin up years (default: "spinupyears" = 2 / any integer number) During spin up years humus pools are scaled in order to balance decomposition with humification.
  • Spin up carbon loss (negative number) / build-up (positive number) rate (kg:ha-1:yr-1) (default: "spinupdeltac" = 0 / any floating point number) During spin up years humus pools are assumed to have an annual lost/build-up rate.

MeTrx includes several model-specifc output options:

  • metrxdaily
  • metrxyearly
  • metrxlayerdaily
  • metrxlayeryearly
  • metrxsubdaily
  • metrxfluxes

In order to include a MeTrx specific output, add the according attribute to the sinks section in the project file. Example:

<sinks sinkprefix="output/metrx_" >
<metrxdaily sink="metrx-daily.txt" format="txt" />
</sinks>

Model initialisation

C/N ratio

The allocation of soil organic matter to various humus pools is primarily influenced by the C/N ratio within each pool, while adhering to the overall constraint of maintaining the soil's overarching C/N ratio.

The target C/N ratio of all mineral associated organic matter pools depend on the overall soil C/N ratio. Humus pool 1 representes non-protected organic matter. Humus pool 2 and 3 represent "old" and "very old" protected soil organic matter, respectively:

\begin{eqnarray*} C/N_{hum,1} &=& C/N_{soil} \\ C/N_{hum,2} &=& 1.5 \cdot C/N_{soil} \\ C/N_{hum,3} &=& METRX\_CN\_FRAC\_HUM3 \cdot C/N_{soil} \\ \end{eqnarray*}

Pool distribution

Active organic material is assigned to microbial necromass (15%) and mineral associated but non-protected organic matter (humus pool 1: 85%).

Fragmentation

Incoming litter from, e.g., plants, algae, animals is fragmentated to 'soil organic' litter (no more distinguishable from soil organic matter)

metrx_litter_flow_chart.png
Litter flow

Soil organic matter turnover

Turnover of soil organic matter (SOM) includes

  • Decomposition to inorganic carbon dioxide ( \( CO_2 \))
  • Decomposition to dissolved organic carbon (DOC)
  • Redistribution (humification) of SOM within different pools (e.g., from younger to older humus pools)

Dissolved organic carbon is distinguished between the aerob and the anaerob soil and facilitates microbial metabolism (e.g., nitrification, denitrification, fermentation, ...). During fermentation and synthrophic metabolism, anaerob DOC can be further metabolized to acetate and molecular hydrogen, which serves methanogenic microbes as substrate. Decomposed nitrogen is always transferred to the dissolved organic nitrogen pool (DON) from where it is subsequently redistributed depending on pool specific target CN ratios.

metrx_c_flow_chart.png
Scheme of Soil organic carbon turnover

Turnover of microbial necromass

Turnover of microbial necromass involves:

  • Decomposition (transfer to dissolved organic carbon pool)
  • Humification (transfer to humus pools)

Decomposition of inactive microbial carbon \( m_{imc} \) and nitrogen \( m_{imn} \) depends on soil temperature, soil moisture and soil anaerobicity:

\begin{eqnarray*} \Delta m_{imc \rightarrow doc_{ae}} = K\_DC\_AORG \cdot m_{imc} \cdot \phi_{tm} \cdot \phi_{till} \cdot (1 - anvf) \\ \Delta m_{imc \rightarrow doc_{an}} = K\_DC\_AORG \cdot m_{imc} \cdot \phi_{tm} \cdot \phi_{till} \cdot anvf \\ \Delta m_{imn} = \frac{\Delta m_{imc \rightarrow doc_{ae}} + \Delta m_{imc \rightarrow doc_{ae}}}{CN_{im}} \\ \end{eqnarray*}

Temperature moisture factor

metrx_decomposition_on_temperature_soilwater.png
Response function of decomposition of inactive microbes depending on temperature and moisture
Humification of inactive microbial carbon is given by:

\begin{eqnarray*} \Delta m_{imc \rightarrow hum (young)} = METRX\_KR\_HU\_AORG\_HUM\_0 \cdot m_{imc} \\ \Delta m_{imc \rightarrow hum (old, high CN)} = METRX\_KR\_HU\_AORG\_HUM\_1 \cdot m_{imc} \\ \end{eqnarray*}

Turnover of soil organic matter and plant debris

Turnover of SOM and plant debris includes:

  • Decomposition (transfer to dissolved organic carbon pool)
  • Humification (transfer to humus pools)

Turnover rates depend on:

  • Climatic factors (temperature, moisture)
  • Soil related factors (clay content, pH, aerobicity)
  • Chemical composition (litter type, CN ratio)
  • Management (tilling)

Depending on the litter or humus pool the general turnover rate is given by:

\[ \frac{dm_x}{dt} = K_x \cdot m_x \cdot \Pi_i \phi_{i} \]

with \( \Pi_i \phi_{i} \) being the multiplicative combination of pool specific environmental reduction factors \( \phi_{i} \) (e.g., temperature, moisture,...) determining turnover.

The influence of temperature and moisture is given by:

\[ \phi_{t,m} = \frac{2}{\frac{1}{\phi_{t}} + \frac{1}{\phi_{m}}} \]

metrx_decomposition_on_temperature_soilwater.png
Response function of decomposition depending on temperature and moisture
The influence of the lignin content of the litter is given by:

\[ \phi_{lig} = e^{-METRX\_BETA\_LITTER\_TYPE \cdot \frac{c_{lig}}{c_{tot}}} \]

The influence of litter quality (C/N ratio) is given by:

\[ \phi_{litter} = 1 - METRX\_KR\_REDUCTION\_CN \cdot \frac{C_{lit}}{N_{lit}} \]

The influence of clay content is given by

\[ \phi_{clay} = METRX\_F\_DECOMP\_CLAY\_1 + (1- METRX\_F\_DECOMP\_CLAY\_1) \cdot e^{-METRX\_F\_DECOMP\_CLAY\_2 \cdot c_{clay}} \]

metrx_decomposition_on_clay.png
Response function of decomposition depending on clay
The influence of O2 availability is given by the anaerobic volume fraction ( \( anvf \)). The carbon flux from each litter and humus pool due to decomposition is distinguished by \( anvf \):

\begin{eqnarray*} \frac{dm_x}{dt} &=& \frac{dm_{x, anvf}}{dt} + \frac{dm_{x, aevf}}{dt} \\ \frac{dm_{x, anvf}}{dt} &=& K_x \cdot m_x \cdot \Pi_j \phi_{j} \cdot METRX\_KR\_REDUCTION\_ANVF \cdot anvf \\ \frac{dm_{x, aevf}}{dt} &=& K_x \cdot m_x \cdot \Pi_j \phi_{j} \cdot (1 - anvf) \end{eqnarray*}

The influence of pH is given by:

\[ \phi_{pH} = \frac{1}{1 + e^{-METRX\_F\_DECOMP\_PH\_1 \cdot (pH - METRX\_F\_DECOMP\_PH\_2)}} \]

metrx_decomposition_on_ph.png
Response function of decomposition depending on pH
Overview of reduction factors for decomposition of litter and humus pools

Pool Parameter tilling Temp. Moisture pH litter type litter C/N clay O2
Solutes METRX_KR_DC_SOL yes yes yes yes yes no yes
Cellulose METRX_KR_DC_CEL yes yes yes yes yes no yes
Lignin METRX_KR_DC_CEL yes yes yes yes yes no yes
Humus 1 METRX_KR_DC_HUM1 yes yes yes no no yes yes
Humus 2 METRX_KR_DC_HUM2 yes yes yes no no yes yes
Humus 3 METRX_KR_DC_HUM3 yes yes yes no no yes yes

Decomposed carbon is added to DOC:

\begin{eqnarray*} \frac{dDOC_{ae}}{dt} &=& -\frac{dC_{x, aevf}}{dt} \\ \frac{dDOC_{an}}{dt} &=& -\frac{dC_{x, anvf}}{dt} \end{eqnarray*}

Decomposed nitrogen is partly mineralized and partly added to DON:

\begin{eqnarray*} \frac{dNH_4}{dt} &=& -0.5 \frac{dN_{x}}{dt} \\ \frac{dDON}{dt} &=& -0.5 \frac{dN_{x}}{dt} \end{eqnarray*}

Microbial dynamics

Microbial growth is given by:

\[ \frac{c_{mic}}{dt} = c_{mic} a_{mic} \mu_{mic} \phi_{DOC} \]

\( c_{mic}: \) Microbial biomass
\( a_{mic}: \) Microbial activity
\( \mu_{mic}: \) Potential microbial growth rate
\( \phi_{DOC}: \) Microbial growth dependency on DOC

The activity coefficient of microbes \( a_{mic} \) is given by a harmonic mean of a soil temperature ( \( \phi_{T}\)) and a soil water ( \( \phi_{wfps}\)) depending response coefficient.

\[ a_{mic} = \frac{\phi_{T} + \phi_{wfps}}{\frac{1}{\phi_{T}} + \frac{1}{\phi_{wfps}}} \]

with \( \phi_{T}\) given by:

\[ \phi_{T} = e^{-METRX\_F\_MIC\_T\_EXP\_1 \cdot \left( \frac{1 - T}{METRX\_F\_MIC\_T\_EXP\_2} \right)^2} \]

metrx_microbial_activity_on_temperature.png
Microbial activity dependency on temperature
and with \( \phi_{wfps}\) given by:

\[ \phi_{wfps} = 1 - \frac{1}{1 + e^{(wfps - METRX\_F\_MIC\_M\_WEIBULL\_1) \cdot METRX\_F\_MIC\_M\_WEIBULL\_2}} \]

metrx_microbial_activity_on_soilwater.png
Microbial activity dependency on water

The potential microbial growth rate is given by the parameter: \( MUE\_MAX\_C\_MICRO\_1 \).

The dependency of microbial growth on DOC is given by:

\[ \phi_{DOC} = \frac{DOC}{DOC + METRX\_KMM\_C\_MIC} \]

metrx_microbial_growth_on_doc.png
Microbial growth dependency on DOC

Microbial loss of biomass via maintenance respiration \( \frac{c_{mic,r}}{dt} \) and death are calculated after [6] :

\begin{eqnarray*} \frac{c_{mic,r}}{dt} &=& c_{mic} a_{mic} a_{max} (1 - Y_r) \\ \frac{c_{mic,d}}{dt} &=& c_{mic} a_{mic} a_{max} \frac{1}{1 + k_a \cdot DOC} \end{eqnarray*}

\( c_{mic}: \) Microbial biomass
\( c_{mic,r}: \) Microbial biomass subject to respiration
\( c_{mic,d}: \) Microbial biomass subject to death
\( a_{mic}: \) Microbial activity
\( a_{max}: \) Maximum microbial death rate

Nitrification

Nitrification is modeled as a two-stage process:

\[ NH_4^+ \rightarrow NO_2^- \rightarrow NO_3^- \]

depending on microbial biomass.

NH4 nitrification

The first step of Nitrification is given by:

\[ \frac{d NH_4^+}{dt} = -c_{mic} a_{mic} \mu_{mic} \phi_{NH_4^+} \phi_{O_2} \phi_{ph} \phi_{ni} \]

\( c_{mic}: \) Microbial biomass
\( a_{mic}: \) Microbial activity
\( \mu_{mic}: \) Microbial growth rate
\( \phi_{NH_4^+}: \) Microbial growth dependency on DOC
\( \phi_{O_2}: \) Microbial growth dependency on O2
\( \phi_{ph}: \) Microbial growth dependency on NH4
\( \phi_{ni}: \) Effect of nitrification inhibitor

The activity coefficient of nitrifier \( a_{mic} \) is given by a harmonic mean of a soil temperature ( \( \phi_{T}\)) and a soil water ( \( \phi_{wfps}\)) depending response coefficient.

\[ a_{mic} = \frac{\phi_{T} + \phi_{wfps}}{\frac{1}{\phi_{T}} + \frac{1}{\phi_{wfps}}} \]

with \( \phi_{T}\) given by:

\[ \phi_{T} = e^{-METRX\_F\_MIC\_T\_EXP\_1 \cdot \left( \frac{1 - T}{METRX\_F\_MIC\_T\_EXP\_2} \right)^2} \]

metrx_microbial_activity_on_temperature.png
Response function depending on temperature
and with \( \phi_{wfps}\) given by:

\[ \phi_{wfps} = 1 - \frac{1}{1 + e^{(wfps - METRX\_F\_MIC\_M\_WEIBULL\_1) \cdot METRX\_F\_MIC\_M\_WEIBULL\_2}} \]

metrx_microbial_activity_on_soilwater.png
Response function depending on soilwater

The influence of \( NH_4^+ \) on nitrification of \( NH_4^+ \) is given by:

\[ \phi_{NH_4^+} = \frac{NH_4^+}{NH_4^+ + METRX\_KMM\_NH4\_NIT} \]

metrx_nh4_nitrification_on_nh4.png
Nitrification of NH4 depending on NH4

The influence of \( O_2 \) on nitrification of \( NH_4^+ \) is given by:

\[ \phi_{O_2} = \frac{O_2}{O_2 + METRX\_KMM\_O2\_NIT} \]

metrx_nh4_nitrification_on_o2.png
Nitrification of NH4 depending on O2

The influence of nitrification inhibitor is given by Enhanced efficiency nitrogen fertilizers.

Production of NO and N2O during nitrification

During the first step of nitrification a certain amount of N ist lost in form of \( NO \) and \( N_2O \). The relevant processes are a mix of:

  • chemical decomposition of the metabolite hydroxylamine (NH2OH) to NO
  • nitrifier denitrification (denitrification within the nitrifying microbe)

Reported production of \( NO \) during nitrification:

  • 0.1 - 10% of gross NH4 oxidation (Ludwig et al., 2001)
  • 0.6 - 2.5% of gross NH4 oxidation (Garrido et al. 2002)

All \( N_2O \) produced in connection with nitrification was initially \( NO \). Emissions of \( NO \) and \( N_2O \) during nitrification are influenced by soil temperature and moisture, 0.03% at 5oC and 40% WFPS to 0.12% at 25oC and 60% WFPS (Chen et al. 2010)

\[ \frac{d (NO+N_2O)}{dt} = - METRX\_KF\_NIT\_NO\_N2O \cdot \frac{d NH_4^+}{dt} \phi_{NO+N2O, T, wfps} \]

The associated factor \( \phi_{NO+N2O, T, wfps} \) is given by a harmonic mean of a soil temperature ( \( \phi_{NO+N2O, T} \)) and a soil water ( \( \phi_{NO+N2O, wfps} \)) depending response coefficient:

\[ \phi_{NO+N2O, T, wfps} = \frac{2.0}{\frac{1.0}{\phi_{NO+N2O, T}} + \frac{1.0}{\phi_{NO+N2O, wfps}}} \]

with \( \phi_{NO+N2O, T}\) given by:

\[ \phi_{NO+N2O, T} = METRX\_F\_NIT\_NO\_N2O\_T\_EXP\_1 \cdot e^{\frac{T}{METRX\_F\_NIT\_NO\_N2O\_T\_EXP\_2}} \]

metrx_no_n2o_prod_nitrification_on_temperature.png
NO and N2O production during nitrification depending on soil temperature
and with \( \phi_{NO+N2O, wfps}\) given by:

\[ \phi_{NO+N2O, wfps} = 1 - \frac{1}{1 + e^{(wfps - METRX\_F\_NIT\_NO\_N2O\_M\_WEIBULL\_1) \cdot METRX\_F\_NIT\_NO\_N2O\_M\_WEIBULL\_2}} \]

metrx_no_n2o_prod_nitrification_on_soilwater.png
NO and N2O production during nitrification depending on soil water
The fraction of NO depends on soil water:

\[ \frac{d (NO)}{dt} = \frac{d (NO+N_2O)}{dt} \cdot \phi_{NO, wfps} \]

with

\[ \phi_{NO, wfps} = 1 - \frac{1}{ 1 + e^{METRX\_F\_NIT\_NO\_M\_EXP\_1 \cdot (wfps - METRX\_F\_NIT\_NO\_M\_EXP\_2)}} \]

metrx_no_prod_nitrification_on_soilwater.png
NO production during nitrification depending on soil water
No pH effect of ammonia oxidation on N2O emissions observed (Booth, Stark and Rastetter 2005).

NO2 nitrification

The second step of nitrification is calculated independent of microbial biomass:

\[ \frac{d NO_2^-}{dt} = \frac{NO_2^-}{METRX\_KMM\_NO2\_NIT + NO_2^-} \]

metrx_no2_nitrification_on_no2.png
Nitrification of NO2 depending on NO2

Denitrification

Microbial denitrification

Denitrification is calculated as four-step process including the nitrogen species \( NO_3^-, NO_2^-, NO \) and \( N_2O \):

\[ NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2 \]

Denitrifier growth

All denitrification steps are calculated based on actively denitrifying microbial biomass. The associated activity coefficient of denitrifying microbes \( a_{mic} \) is given by a harmonic mean of a soil temperature ( \( \phi_{T}\)) and a soil water ( \( \phi_{wfps}\)) depending response coefficient.

\[ a_{mic} = \frac{2}{\frac{1}{\phi_{T}} + \frac{1}{\phi_{wfps}}} \]

with \( \phi_{T}\) given by:

\[ \phi_{T} = e^{-METRX\_F\_MIC\_T\_EXP\_1 \cdot \left( \frac{1 - T}{METRX\_F\_MIC\_T\_EXP\_2} \right)^2} \]

metrx_microbial_activity_on_temperature.png
Response function depending on temperature
and with \( \phi_{wfps}\) given by:

\[ \phi_{wfps} = 1 - \frac{1}{1 + e^{(wfps - METRX\_F\_MIC\_M\_WEIBULL\_1) \cdot METRX\_F\_MIC\_M\_WEIBULL\_2}} \]

metrx_denitrification_on_soilwater.png
Response function depending on soilwater
Microbial growth depends on carbon and nitrogen availability:

\begin{eqnarray*} \phi_{C} &=& \frac{DOC}{DOC + METRX\_KMM\_C\_DENIT} \\ \phi_{N} &=& \frac{N_{total}}{N_{total} + METRX\_KMM\_N\_DENIT} \\ \phi_{C,N} &=& \frac{2}{\frac{1}{\phi_{C}} + \frac{1}{\phi_{N}}} \end{eqnarray*}

Microbial enzymes relevant for denitrification are:

  • narG and napA: (NO3 -> NO2)
  • nirK and nirS: (NO2 -> NO)
  • cnorB and qnorB: (NO -> N2O)
  • nosZ (N2O -> N2)

Heterotrophic denitrification decreases with increasing pH (Kool et al. 2010). Low pH inhibits all enzymes but especially nosZ The general pH influence on microbial denitrifier growth influencing all enzymes is given by:

\[ \phi_{pH} = 1 - \frac{1}{1 + e^{\frac{ph - METRX\_F\_DENIT\_PH\_1}{METRX\_F\_DENIT\_PH\_2}}} \]

metrx_denitrification_on_ph.png
Response function of denitrification depending on pH
The pH factor specifically for nosZ influencing denitrification of N2O is given by:

\[ \phi_{pH,nosZ} = 1 - \frac{1}{1 + e^{\frac{ph - METRX\_F\_DENIT\_N2O\_PH\_1}{METRX\_F\_DENIT\_N2O\_PH\_2}}} \]

metrx_denitrification_of_n2o_on_ph.png
Response function of denitrification of N2O depending on pH
Total microbial carbon demand includes assimilation and dissimilation:

\begin{eqnarray*} C_{demand} &=& c_{mic} \mu_{mic} a_{mic} \frac{1.0}{Y_{denit}} \phi_{C,N} \phi_{pH} \\ C_{demand, assi} &=& C_{demand} Y_{denit} \\ C_{demand, diss} &=& C_{demand} (1 - Y_{denit}) \end{eqnarray*}

The denitrification efficiency is constant:

\[ Y_{denit} = METRX\_MIC\_EFF\_ANAEROBIC\_RESPIRATION \]

Denitrifier nitrogen use

Denitrification of \( N_x \) depends on their relative abundance using associated scaling factors:

\begin{eqnarray*} \psi_{NO_3^-} &=& \frac{NO_3^-}{NO_3^- + NO_2^- + NO + N_2O} \\ \psi_{NO_2^-} &=& (1- \psi_{NO_3^-}) \cdot \frac{NO_2^-}{NO_2^- + NO + N_2O} \\ \psi_{NO} &=& (1- \psi_{NO_3^-}) \cdot \frac{NO}{NO_2^- + NO + N_2O} \\ \psi_{N_2O} &=& (1- \psi_{NO_3^-}) \cdot \frac{N_2O}{NO_2^- + NO + N_2O} \\ \end{eqnarray*}

\( N_x \) can be denitrified a sinlge step or multiple steps before it is released from the denitrifying microbial organism to the soil environment. The fraction of \( N_x \), which is completely denitrified to \( N_2 \) within the same organism depends on the soil anaerobic volume (assuming denitrification enzymes are more developped under anaerobic conditions):

\[ \phi_{anvf,1} = METRX\_F\_DENIT\_N2\_1 \cdot METRX\_F\_DENIT\_N2\_2 + V_{an} \cdot METRX\_F\_DENIT\_N2\_2 \]

metrx_denitrification_to_N2_on_anvf.png
Response function of denitrification depending on anaerobicity
Stoichiometry between dissimilative nitrogen and carbon demand is based on succinate ( \( CH_{1.8}O_{0.5}N_{0.2} \)) (Kampschreur et al. 2012):

  • \( C_4H_4O_4 + 3.23 NO_3 + 1.64 H + 0.36 NH_4 \rightarrow 1.8 CH_{1.8}O_{0.5}N_{0.2} + 3.23 NO_2 + 2.2 CO_2 + 1.92 H_2O \)
  • \( C_4H_4O_4 + 6.45 NO_2 + 8.09 H + 0.36 NH_4 \rightarrow 1.8 CH_{1.8}O_{0.5}N_{0.2} + 6.45 NO + 2.2 CO_2 + 5.15 H_2O \)
  • \( C_4H_4O_4 + 6.45 NO + 1.64 H + 0.36 NH_4 \rightarrow 1.8 CH_{1.8}O_{0.5}N_{0.2} + 3.23 NO + 2.2 CO_2 + 1.92 H_2O \)

Denitrification of NO3

Currently, it is assumed that after denitrification of \( NO_3^- \), \( NO_2^- \) is always released to the environment:

\begin{eqnarray*} \frac{d NO_3^-}{dt} &=& \psi_{NO_3^-} \cdot C_{demand} \cdot \Xi_{CN, NO_3^-} \\ \Xi_{CN, NO_3^-} &=& \xi_{CN, NO_3^- \rightarrow NO_2^-} \\ \frac{d NO_3^-}{dt} &=& \frac{d NO_{3, \rightarrow NO_2^-}^-}{dt} \end{eqnarray*}

Denitrification of NO2

Denitrified \( NO_2^- \) is partly transferred to \( NO, N_2O \) and \( N_2 \) depending on the anaerobicity of the soil. The associated carbon demand is given by:

\begin{eqnarray*} \frac{d C_{NO_2^-}}{dt} &=& \psi_{NO_2^-} \frac{C_{denit}}{dt} \\ \frac{d C_{NO_2^- \rightarrow N_2}}{dt} &=& \frac{d C_{NO_2^-}}{dt} \cdot \phi_{anvf,1} \cdot \phi_{pH, nosZ} \\ \frac{d C_{NO_2^- \rightarrow NO}}{dt} &=& \frac{d C_{NO_2^-}}{dt} \cdot (1-\phi_{anvf,1}) \cdot \phi_{anvf,2} \\ \frac{d C_{NO_2^- \rightarrow N_2O}}{dt} &=& \frac{d C_{NO_2^-}}{dt} - \frac{d C_{NO_2^- \rightarrow N_2}}{dt} - \frac{d C_{NO_2^- \rightarrow NO}}{dt} \end{eqnarray*}

The stoichiometry between carbon and nitrogen is given by:

\begin{eqnarray*} \frac{d NO_{2, NO_2^- \rightarrow N_2}^-}{dt} &=& \xi_{CN, NO_2^- \rightarrow N_2} \frac{d C_{NO_2^- \rightarrow N_2}}{dt} \\ \frac{d NO_{2, NO_2^- \rightarrow NO}^-}{dt} &=& \xi_{CN, NO_2^- \rightarrow NO} \frac{d C_{NO_2^- \rightarrow NO}}{dt} \\ \frac{d NO_{2, NO_2^- \rightarrow N_2O}^-}{dt} &=& \xi_{CN, NO_2^- \rightarrow N_2O} \frac{d C_{NO_2^- \rightarrow N_2O}}{dt} \end{eqnarray*}

Denitrification of NO

Denitrified \( NO \) is partly transferred to \( N_2O \) and \( N_2 \) depending on the anaerobicity of the soil. The associated carbon demand is given by:

\begin{eqnarray*} \frac{d C_{NO}}{dt} &=& \psi_{NO} \frac{C_{denit}}{dt} \\ \frac{d C_{NO \rightarrow N_2}}{dt} &=& \frac{d C_{NO}}{dt} \cdot \phi_{anvf,1} \cdot \phi_{pH, nosZ} \\ \frac{d C_{NO \rightarrow N_2O}}{dt} &=& \frac{d C_{NO}}{dt} - \frac{d C_{NO_2^- \rightarrow N_2}}{dt} \end{eqnarray*}

The stoichiometry between carbon and nitrogen is given by:

\begin{eqnarray*} \frac{d NO_{NO \rightarrow N_2}}{dt} &=& \xi_{CN, NO \rightarrow N_2} \frac{d C_{NO \rightarrow N_2}}{dt} \\ \frac{d NO_{NO \rightarrow N_2O}}{dt} &=& \xi_{CN, NO \rightarrow N_2O} \frac{d C_{NO \rightarrow N_2O}}{dt} \end{eqnarray*}

Denitrification of N2O

The associated carbon demand is given by:

\begin{eqnarray*} \frac{d C_{N_2O}}{dt} &=& \psi_{N_2O} \frac{C_{denit}}{dt} \\ \end{eqnarray*}

The stoichiometry between carbon and nitrogen is given by:

\begin{eqnarray*} \frac{d N_2O}{dt} &=& \xi_{CN, N_2O} \frac{d C_{N_2O}}{dt} \\ \end{eqnarray*}

Chemodenitrification

At low pH (<4.5) N2O can be produced via chemical decomposition of hydroxylamine (NH2OH), nitroxyl hydride (HNO) or NO2-, which are intermediate products of ammonia oxidation (Zumft 1997; Wrageet al. 2001).

Temperature dependency of chemodenitrification:

metrx_chemodenitrification_on_temperature.png
Response function depending on temperature
pH dependency of chemodenitrification:

metrx_chemodenitrification_on_ph.png
Response function depending on pH

Fermentation and synthrophy

Under anaerobic conditions acetate and hydrogen are produced, which may serve as substrate for iron reducing and methanogenic bacteria.

Temperature dependency of microbial activity:

metrx_fermentation_on_temperature.png
Response function depending on temperature

Iron reduction

The stoecheometry of iron reduction via aceate is given by::

\[ CHCOO^- + 8 Fe^{3+} + 4 H_2O \rightarrow 2 HCO_3^- + 8 Fe^{2+} + 9 H^+ \]

The stoecheometry of iron reduction via aceate is given by::

\[ H_2 + 2 Fe^{3+} + 4 H^+ \rightarrow 2 Fe^{2+} + 6 H_2O \]

Iron reduction via acetate and hydrogen depends on the amount of Fe3+ and the amount of either aceatet or hydrogen each modeled using a Michaelis Menten kinetic. Further influencing factors are temperature, NO3 and O2:

\[ \frac{dFe^{3+}}{dt} = - METRX\_MUEMAX\_C\_FE\_RED \cdot \phi_{T} \cdot \phi_{NO3} \cdot \phi_{O2} \cdot \phi_{Fe3+} \cdot \phi_{AC/H2} \]

The dependy on NO3 is given by:

\[ \phi_{NO3} = 1 - \frac{NO3}{NO3 + NO3\_MOLAR\_MAX\_FE\_RED} \]

Iron oxidation

The stoecheometry of iron oxidation is given by::

\[ 4 Fe^{2+} + O_2 + 10 H_2O \rightarrow 4 Fe(OH)_3 + 8 H^+ \]

\[ \frac{dFe^{2+}}{dt} = - METRX\_KR\_OX\_FE \cdot Fe^{2+} \cdot \phi_{O2} \]

The dependy on O2 is given by:

\[ \phi_{O2} = \frac{O_2}{O_2 + METRX\_KMM\_O2\_FE\_OX} \]

Methane production

metrx_ch4_flow_chart.png
Scheme of methane related processes
Methane production takes first place after large fraction of total iron has been reduced:

\[ Fe^{3+} < METRX\_FRAC\_FE\_CH4\_PROD \cdot (Fe^{3+} + Fe^{2+}) \]

Methane production depends on temperature and pH:

\begin{eqnarray*} \phi_{T} &=& METRX\_F\_CH4\_PRODUCTION\_T\_EXP\_1 \\ && \left ( 1- \frac{1}{METRX\_F\_CH4\_PRODUCTION\_T\_EXP\_2} \right )^2 \\ \phi_{pH} &=& \frac{1}{1 + \left( \frac{|pH - 7|}{2} \right)^{3.4}} \\ \end{eqnarray*}

metrx_ch4_production_on_ph.png
pH dependency of methane production
metrx_ch4_production_on_temperature.png
Temperature dependency of methane production
The stoecheometric formula for acetate methanogenesis is given by:

\[ CH_3COOH -> CO_2 + CH_4 \]

Acetoclastic methanogenesis is given by:

\[ \frac{d CH_4}{d t} = METRX\_MUEMAX\_C\_CH4\_PROD \cdot \phi_{CH_3COOH} \cdot \phi_T \cdot \phi_{pH} \cdot \phi_{O_2} \]

with \( \phi_{CH_3COOH}\) given by:

\[ \phi_{CH_3COOH} = \frac{CH_3COOH}{METRX\_KMM\_AC\_CH4\_PROD + CH_3COOH} \]

The stoecheometric formula for hydrogenotrophic methanogenesis is given by:

\[ 4 H_2 + CO_2 -> 2 H_2O + CH_4 \]

Hydrogenotrophic methanogenesis is given by:

\[ \frac{\partial CH_4}{\partial t} = METRX\_MUEMAX\_H2\_CH4\_PROD \cdot \phi_{H_2} \\ \cdot \phi_T \cdot \phi_{pH} \cdot \phi_{O_2} \]

Methane oxidation

The stoecheometry of methanotrophy is given by:

\[ CH_4 + (2-\alpha) O_2 \rightarrow (1-\alpha) CO_2 + (2-\alpha) H_2O + \alpha CH_2O \]

Methane oxidation depends on nitrogen, oxygen and methane concentration as well as temperature:

\begin{eqnarray*} \phi_{N} &=& (1- METRX\_F\_N\_CH4\_OXIDATION) \\ && METRX\_F\_N\_CH4\_OXIDATION \frac{N}{METRX\_KMM\_N\_CH4\_OX + N}\\ \phi_{O_2} &=& \frac{O_2}{METRX\_K\_O2\_CH4\_OX \cdot O_2} \\ \phi_{CH_4} &=& \frac{CH_4}{METRX\_KMM\_CH4\_CH4\_OX + CH_4} \\ \phi_{T} &=& METRX\_F\_CH4\_OXIDATION\_T\_EXP\_1 \\ && \left ( 1- \frac{1}{METRX\_F\_CH4\_OXIDATION\_T\_EXP\_2} \right )^2 \\ \end{eqnarray*}

metrx_ch4_oxidation_on_temperature.png
Temperature dependency of methane oxidation
Methane oxidation is given by:

\[ \frac{d CH_4}{d t} = - METRX\_MUEMAX\_C\_CH4\_OX \cdot \phi_{N} \cdot \phi_{O_2} \cdot \phi_{CH_4} \cdot \phi_{T} \]

Algae growth

Algae growth is only considered if option "algae" is set true.

Algae growth only takes place if ponding water table exists and incoming shortwave radiation directly above soil (below canopy) is greater zero.

Algae growth rate depends on:

  • Nitrogen availability:

    \[ \phi_N = (1.0 - \Phi_{METRX\_F\_N\_ALGAE}) + \Phi_{METRX\_F\_N\_ALGAE} \cdot \frac{N}{\Phi_{METRX\_KMM\_N\_ALGAE} + N } \]

  • Temperature:

    \[ \phi_T = \left\{ \begin{array}{cccc} 0.0 & T \le 15.0 \\ \frac{T - 15.0}{15.0} & 15.0 < T \le 30.0 \\ 1.0 - \frac{T - 30.0}{15.0} & 30.0 < T \le 45.0 \\ 0.0 & 45.0 > T \end{array} \right. \label{eq2} \]

  • Photosynthetic radiation:

    \[ \phi_P = 1.0 - e^{\frac{-P}{100.0}} \]

Algae growth rate is given by:

\[ \mu_g = \Phi_{METRX\_MUEMAX\_C\_ALGAE} \cdot min(\phi_N, \phi_T, \phi_P) \]

Algae growth changes pH value of the ponding water table:

\[ \Delta pH = 3.0 \cdot \phi_N \cdot \phi_T \cdot \phi_P \]

Algae turnover:

\[ \mu_d = m_A \cdot \Phi_{METRX\_AMAX\_ALGAE} \]

Chemistry

NH3-NH4 equilibrium

The chemical equilibrium between dissolved \( NH_3 \) and \( NH_4 \) is given by (Sadeghi et al., 1988):

\begin{eqnarray*} f_{NH_3} &=& \frac{c_{NH_3}}{c_{NH_3} + c_{NH_4}} \\ f_{NH_3} &=& \frac{1}{1 + \frac{10^{-pH}}{K_a}} \\ K_a &=& 10^{\frac{-2728.3}{T} - 0.094219} \end{eqnarray*}

The chemical equilibrium between dissolved \( NH_3 \) and \( NH_4 \) is calculated for the surface water table and the soil solution.

Ammonium adsorption

Ammonium is partly adsorped at the soil surface depending on soil texture.

Dissolution

Phase equilibrium betwenn dissolved and gaseous state is calculated throughout the soil profile as well as for the top layer of the surface water table (if existing).

For the following species the phase equilibrium betwenn dissolved and gaseousstate is calculated:

  • \( O_2 \)
  • \( CH_4 \)
  • \( CO_2 \)
  • \( NH_3 \)
  • \( NO \)
  • \( N_2O \)

For the equilibrium between the partial pressure in the gas pahse \( p_{i,gas} \) and the concentrations in the dissolved species \( i \), the Henry law is applied:

\[ c_{i,liq} = H_{i} p_{i,gas} \]

Diffusion of gaseous species

Gaseous diffusion is calculated for:

  • \( O_2 \)
  • \( N_2O \) (separately for aerobic and anaerobic species)
  • \( NO \) (separately for aerobic and anaerobic species)
  • \( CH_4 \)
  • \( CO_2 \)
  • \( NH_3 \)

For the bottom, a Neuman no-flow boundary condition is used and for the top a Dirichlet boundary condition is used.

Diffusion of dissolved species

Diffusion of dissolved species is calculated for:

  • \( O_2 \)
  • \( CH_4 \)
  • \( CO_2 \)
  • \( NH_3 \)
  • Urea
  • \( NH_4 \)
  • \( NO_3 \)
  • DOC

The amount of dissolved matter that leaves the simulated domain is added to the leaching output.

If there is a calculated inflow of matter, there is a following correction of mass. The mass is scaled down throughout the whole profile by the amount of calculated mass inflow.

Ebullition

Ebullition is calculated in the soil as well as in the water table. Considered substances are CH4, CO2, O2, NH3, NO, N2O and N2.

Gas bubbles can be fomred as soon as a critical water filled pore space is reached.

Ebullition occurs as soon as total pressure (CH4 + CO2 + ...) exceeds static pressure. Once formed, gas bubbles are transported upwards not being dissolved in upper soil layers as long as water filled pore space is below critical water filled pore space.

If water filled pore space is below critical water filled pore space, gas bubbles are dissolved.

Pertubation

Anaerobic volume

MeTrx considers for a subset of carbon and nitrogen species a horizontal (within one soil layer) differentiation between aerobic and anaerobic parts of the soil. The differentiation is based on the oxygen partial pressure, which in turn is mainly determined by the water profile, respiration processes and gaseous diffusion of oxygen.

metrx_anvf_profile.png
Scheme of soil profile anaerobicity

The anaerobic volume \( V_{an} \) within one soil layer is given by:

\[ V_{an} = e^{-(7 p_{O_2})^2} \]

wherein \( p_{O_2} \) refers to the oxygen partial pressure in bar.

Currently, two different anaerobic volume definitins can be considered:

  • a "relaxed" one affecting processes, which are not exclusively subject to strict anaerobic conditions, e.g., decomposition of soil organic matter
  • a "strict" one affecting processes, which require rather strict anaerobic condtions, e.g., denitrification

    metrx_relaxed_anaerobic_volume_fraction_on_o2.png
    Size of the relaxed anaerobic volume fraction depending on partial pressure of oxygen
    metrx_strict_anaerobic_volume_fraction_on_o2.png
    Size of the strict anaerobic volume fraction depending on partial pressure of oxygen

    A change of the size of the anaerobic volume induces redistribution of the aerobic and anerobic part of carbon and nitrogen species.

    Redistribution occurs by:

    • Relative change of the size of the anaerobic volume
    • Active transport between aerobic and anaerobic volume
    metrx_anvf_aggregate.png
    Scheme of (an-)aerobic soil fractions

    The relative change of a species \( c_x \) only takes place if the share between aerobic and anaerobic volume changes:

    \[ \frac{\partial c_{x,an}}{\partial t} = \frac{c_{x,an}}{V_{an}} \frac{\partial V_{an}}{\partial t} \]

    \[ \frac{\partial c_{x,ae}}{\partial t} = -\frac{\partial c_{x,an}}{\partial t} \]

    The active transport of a species \( c_x \) is given by:

    \[ \frac{\partial c_{x,an}}{\partial t} = T^{\ast} \left ( c_{x,an} - c_{x,tot} \frac{V_{an}}{V_{tot}} \right ) \]

    \[ \frac{\partial c_{x,ae}}{\partial t} = -\frac{\partial c_{x,an}}{\partial t} \]

    The transport coefficient \( T^{\ast} \) is determined by the two parameters:

    • \( METRX\_KR\_ANVF\_DIFF\_GAS \)
    • \( METRX\_KR\_ANVF\_DIFF\_LIQ \)

    for gaseous and dissolved species, respectively.

Field management

Fertilization

MeTrx considers the following list of synthetic fertilizer:

  • NH4NO3
  • NH3
  • NO3
  • NH4
  • NH4SO4
  • SO4
  • Urea
  • CRNF (controlled release fertilizer)
  • NI (Nitrification inhibitor)

Manuring

MeTrx considers the following list of organic fertilizer:

  • slurry
  • farmyard
  • compost
  • straw
  • green manure

Tilling

Within the given tilling depth, the following effects are considered:

  • stubble and aboveground raw litter are incorporated to soil litter pools.
  • all C- and N-pools are homogenized
  • decomposition is stimulated

Urea hydrolysis

Urea from fertilizer or manure is dissolved to ammonium in soil and/or in the surface water table depending on temperature:

\begin{eqnarray*} \frac{d NH_4^+}{dT} = N_{urea} \phi_T \\ \frac{d N_{urea}}{dT} = - \frac{d NH_4^+}{dT} \end{eqnarray*}

Depending on the rate of urea hydrolysis, the pH value from of the respective soil layer or water table layer is increased:

\[ pH = pH_i + \frac{\frac{d N_{urea}}{dT}}{METRX\_KMM\_PH\_INCREASE\_FROM\_UREA} \]

with \( p_i \) representing the basi pH value that has been defined as model input.

Nitrogen fertilizer release

MeTrx Output

MeTrx output (daily)

entity name decription unit
anvf Anaerobic volume fraction averaged over the complete soil profile [-]
pore_connectivity Pore connectivity averaged over the complete soil profile [-]
permeability Permeability averaged over the complete soil profile [-]
wfps Water filled pore space averaged over the complete soil profile [-]
air Water filled pore space averaged over the complete soil profile [-]
root_conductivity Root conductivity averaged over the complete soil profile [m2s-1]
o2 Sum of oygen mass over the complete soil profile [kgha-1]
t_eff_crnf ... [oC]
n_release_fraction_crnf ... [-]
nitrification_inhibition Inhibition of nitrification [-]
urease_inhibition Inhibition of urease hydrolysis [-]
carbon_use_efficiency Carbon use efficiency [-]
N_don Sum of dissolved organic nitrogen mass over the complete soil profile [kgha-1]
N_nh4 Sum of ammonium mass over the complete soil profile [kgha-1]
N_nh4_clay Sum of ammonium adsorbed to clay minerals mass over the complete soil profile [kgha-1]
N_urea Sum of urea mass over the complete soil profile [kgha-1]
N_no2_ae Sum of aerobic NO2 mass over the complete soil profile [kgha-1]
N_no2_an Sum of anaerobic NO2 mass over the complete soil profile [kgha-1]
N_no3_ae Sum of aerobic NO3 mass over the complete soil profile [kgha-1]
N_no3_an Sum of anaerobic NO3 mass over the complete soil profile [kgha-1]
N_n2o_ae Sum of aerobic N2O mass over the complete soil profile [kgha-1]
N_n2o_an Sum of anaerobic N2O mass over the complete soil profile [kgha-1]
N_no_ae Sum of aerobic NO mass over the complete soil profile [kgha-1]
N_no_an Sum of anaerobic NO mass over the complete soil profile [kgha-1]
N_nh3_gas Sum of gaseous ammonia mass over the complete soil profile [kgha-1]
N_nh3_liq Sum of dissolved ammonia mass over the complete soil profile [kgha-1]
C_doc_ae Dissolved organic carbon (aerobic soil volume) [kgCha-1]
C_doc_an Dissolved organic carbon (anaerobic soil volume) [kgCha-1]
C_acetate Acetate [kgCha-1]
C_ch4_gas Methane in gas phase [kgCha-1]
C_ch4_liq Dissolved methane [kgCha-1]
C_aorg Amount of carbon in active organic material pool [kgCha-1]
N_aorg Amount of carbon in active organic material pool [kgNha-1]
C_micro_1 Amount of carbon in microbial pool 1 [kgCha-1]
C_micro_2 Amount of carbon in microbial pool 2 [kgCha-1]
C_micro_3 Amount of carbon in microbial pool 3 [kgCha-1]
N_micro_1 Amount of nitrogen in microbial pool 1 [kgNha-1]
N_micro_2 Amount of nitrogen in microbial pool 2 [kgNha-1]
N_micro_3 Amount of nitrogen in microbial pool 3 [kgNha-1]
C_humus_1 Amount of carbon in humus pool 1 [kgCha-1]
C_humus_2 Amount of carbon in humus pool 2 [kgCha-1]
C_humus_3 Amount of carbon in humus pool 3 [kgCha-1]
N_humus_1 Amount of nitrogen in humus pool 1 [kgNha-1]
N_humus_2 Amount of nitrogen in humus pool 2 [kgNha-1]
N_humus_3 Amount of nitrogen in humus pool 3 [kgNha-1]
C_litter_soil_1 Amount of carbon in soil litter pool 1 [kgCha-1]
C_litter_soil_2 Amount of carbon in soil litter pool 2 [kgCha-1]
C_litter_soil_3 Amount of carbon in soil litter pool 3 [kgCha-1]
N_litter_soil_1 Amount of nitrogen in soil litter pool 1 [kgNha-1]
N_litter_soil_2 Amount of nitrogen in soil litter pool 2 [kgNha-1]
N_litter_soil_3 Amount of nitrogen in soil litter pool 3 [kgNha-1]
C_algae Amount of carbon in algae pool [kgCha-1]
N_algae Amount of nitrogen in algae pool [kgNha-1]
C_litter_stubble Amount of nitrogen in stubble pool [kgCha-1]
N_litter_stubble Amount of nitrogen in stubble pool [kgNha-1]
C_total Total soil organic carbon [kgCha-1]
N_total Total soil organic nitrogen [kgNha-1]
soc_20cm Soil organic carbon content in the top 20 cm soil horizon [%]
soc_40cm Soil organic carbon content in the top 40 cm soil horizon [%]
totn_20cm Total nitrogen content in the top 20 cm soil horizon [%]
totn_40cm Total nitrogen content in the top 40 cm soil horizon [%]
fe2_tot ... []
fe3_tot ... []
till_fact ... []
freeze_thaw_fact ... []
height_litter Height of the surface litter layer [m]
ph_watertable ... []
ph_soil_surface ... []
dN_no3_groundwater ... []
dN_assi ... []
dN_nit_nh4_no2 ... []
dN_nit_no2_no3 ... []
dN_nit_no2_no ... []
dN_nit_no2_n2o ... []
dN_denit_no3_no2 ... []
dN_denit_no2_no ... []
dN_denit_no2_n2o ... []
dN_denit_no2_n2 ... []
dN_denit_no_n2o ... []
dN_denit_no_n2 ... []
dN_denit_n2o_n2 ... []
dN_chemodenit_no2_no ... []
dC_ch4_oxidation ... [kgCha-1]
dC_ch4_production_hydrogen ... [kgCha-1]
dC_ch4_production_acetate ... [kgCha-1]
dC_floor_ch4_plant_diffusion ... [kgCha-1]
dC_floor_ch4_soil_diffusion ... [kgCha-1]
dC_floor_ch4_water_diffusion ... [kgCha-1]
dC_floor_ch4_bubbling ... [kgCha-1]
dC_leach_ch4 ... [kgCha-1]
dO_floor_o2_plant_diffusion ... []
dC_litter_above ... [kgCha-1]
dC_litter_below ... [kgCha-1]
dC_fix_algae ... [kgCha-1]
dN_fix_algae ... []
dC_decomp_litter ... [kg:ha-1]
dC_co2_prod_mic_1_growth ... [kgCha-1]
dC_co2_prod_mic_1_maintenance ... [kgCha-1]
dC_co2_prod_mic_2 ... [kgCha-1]
dC_co2_prod_mic_3_acetate_prod ... [kgCha-1]
dC_co2_prod_mic_3_acetate_cons ... [kgCha-1]
dC_co2_prod_ch4_prod ... [kgCha-1]
dC_co2_prod_ch4_cons ... [kgCha-1]
dH_hydrogen_prod ... []
dC_acetate_prod ... [kgCha-1]
dC_acetate_cons_fe3 ... [kgCha-1]
dH_hydrogen_cons_fe3 ... []
dC_doc_prod_litter ... [kgCha-1]
dC_doc_prod_humus ... [kgCha-1]
dC_doc_prod_aorg ... [kgCha-1]
dC_doc_prod_plant ... [kgCha-1]
dC_doc_prod_total ... [kgCha-1]
dC_humify_mic_hum_2 ... [kgCha-1]
dC_humify_hum_1_hum_2 ... [kgCha-1]
dC_humify_hum_2_hum_3 ... [kgCha-1]
dN_leach ... [kgNha-1]
dC_leach ... [kgCha-1]

Subdaily output

entity name decription unit
N_nh4 Ammonium [kgNm-2]
N_no3 Nitrate [kgNm-2]
C_doc Dissolved organic carbon [kgCm-2]
sC_ch4_ebul CH4 emissions via ebullition [kgCm-2]
sC_ch4_plant CH4 emissions via plant mediated diffusion [kgCm-2]
sC_ch4_soil CH4 emissions via soil surface [kgCm-2]
sC_ch4_water CH4 emissions via surface water table [kgCm-2]
sC_ch4_leach CH4 leaching [kgCm-2]
sC_ch4_prod CH4 production [kgCm-2]
sC_ch4_ox CH4 oxidation [kgCm-2]
sC_acetate_prod Acetate production [kgCm-2]
sC_doc_prod DOC production [kgCm-2]
sN_no3_denit NO3 denitrification [kgNm-2]
sN_n2o_ebul N2O emissions via ebullition [kgNm-2]
sN_n2o_plant N2O emissions via plant mediated diffusion [kgNm-2]
sN_n2o_soil N2O emissions via soil surface [kgNm-2]
sN_n2o_water N2O emissions via surface water table [kgNm-2]
sN_no_ebul NO emissions via ebullition [kgNm-2]
sN_no_plant NO emissions via plant mediated diffusion [kgNm-2]
sN_no_soil NO emissions via soil surface [kgNm-2]
sN_no_water NO emissions via surface water table [kgNm-2]
sN_nh3_ebul NH3 emissions via ebullition [kgNm-2]
sN_nh3_plant NH3 emissions via plant mediated diffusion [kgNm-2]
sN_nh3_soil NH3 emissions via soil surface [kgNm-2]
sN_nh3_water NH3 emissions via surface water table [kgNm-2]
sO_plant_o2_cons Oxygen consumption by roots [kgOm-2]
sO_plant_o2_prod Oxygen release by roots [kgOm-2]
sO_algae_o2_prod Oxygen release by algae [kgOm-2]
ph_watertable Mean pH value in the surface water table [-]
ph_soil_surface Mean pH value in the soil [-]
anvf Anaerobic volume fraction [%]

MeTrx layer output (daily)

entity name decription unit
anvf Anaerobic volume fraction averaged over the complete soil profile [-]
level ... [...]
extension ... [...]
pH ... [-]
pore_connectivity ... [-]
permeability ... [...]
aerenchym_permeability ... [...]
water_content ... [...]
air_content ... [...]
porosity ... [...]
fe2 ... [...]
fe3 ... [...]
C_co2 ... [...]
C_ch4 ... [...]
dC_ch4_bubbling ... [...]
dC_ch4_production ... [...]
dC_ch4_oxidation ... [...]
dC_doc_production ... [...]
dC_acetate_production ... [...]
dC_microbial_death ... [...]
C_doc ... [[kg:ha-1]]
C_acetate ... [[kg:ha-1]]
N_no3 ... [[kg:ha-1]]
N_nh4 ... [[kg:ha-1]]
N_urea ... [[kg:ha-1]]
N_nh3 ... [[kg:ha-1]]
o2 ... [...]
N_no ... [...]
N_n2o ... [...]
C_humus_1 ... [...]
C_humus_2 ... [...]
C_humus_3 ... [...]
dN_no3_cons_denit ... [...]
denit_factor_c ... [-]
denit_factor_n ... [-]
dN_no3_prod_nit ... [kgNha-1]
dN_no3_transport Downward transport of NO3 [kgNha-1]

Yearly output

entity name decription unit
C_surface Surface C-litter [kgCm-2]
C_soil_20cm Total soil carbon in 20 cm topsoil [kgCm-2]
C_humus_1_20cm Carbon in humus pool 1 in 20 cm topsoil [kgCm-2]
C_humus_2_20cm Carbon in humus pool 1 in 20 cm topsoil [kgCm-2]
C_humus_3_20cm Carbon in humus pool 1 in 20 cm topsoil [kgCm-2]
C_litter_20cm Carbon in litter pools in 20 cm topsoil [kgCm-2]
C_aorg_20cm Carbon aorg pool in 20 cm topsoil [kgCm-2]